• Title/Summary/Keyword: Generalized hypergeometric function of Srivastava and Daoust

Search Result 4, Processing Time 0.019 seconds

SOME FRACTIONAL INTEGRAL FORMULAS INVOLVING THE PRODUCT OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Kim, Yongsup
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.443-451
    • /
    • 2017
  • Very recently, Agarwal gave remakably a scads of fractional integral formulas involving various special functions. Using the same technique, we obtain certain(presumably) new fractional integral formulas involving the product of confluent hypergeometric functions. Some interesting special cases of our two main results are considered.

CERTAIN UNIFIED INTEGRALS INVOLVING A PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND

  • Choi, Junesang;Agarwal, Praveen
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.667-677
    • /
    • 2013
  • A remarkably large number of integrals involving a product of certain combinations of Bessel functions of several kinds as well as Bessel functions, themselves, have been investigated by many authors. Motivated the works of both Garg and Mittal and Ali, very recently, Choi and Agarwal gave two interesting unified integrals involving the Bessel function of the first kind $J_{\nu}(z)$. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present two generalized integral formulas involving a product of Bessel functions of the first kind, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. Some interesting special cases and (potential) usefulness of our main results are also considered and remarked, respectively.

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

FINITE INTEGRALS ASSOCIATED WITH THE PRODUCT OF ORTHOGONAL POLYNOMIALS AND WRIGHT FUNCTION

  • Khan, Nabiullah;Khan, Mohammad Iqbal;Khan, Owais
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.597-612
    • /
    • 2021
  • Several useful and interesting extensions of the various special functions have been introduced by many authors during the last few decades. Various integral formulas associated with Wright function have been studied and a noteworthy amount of work have found in literature. The principal object of the present paper is to evaluate finite integral formulas containing the product of orthogonal polynomials with generalized Wright function. These integral formulas are expressed in terms of Srivastava and Daoust function. Some interesting particular cases are obtained from the main results by specialising the suitable values of the parameters involved.