• 제목/요약/키워드: Generalized flow model

검색결과 133건 처리시간 0.019초

Integrated Generation and Transmission Expansion Planning Using Generalized Bender’s Decomposition Method

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2228-2239
    • /
    • 2015
  • A novel integrated optimization method based on the Generalized Bender’s Decomposition (GBD) is proposed to combine both generation and transmission expansion problems. Most of existing researches on the integrated expansion planning based on the GBD theory incorporate DC power flow model to guarantee the convergence and improve the computation time. Inherently the GBD algorithm based on DC power flow model cannot consider variables and constraints related bus voltages and reactive power. In this paper, an integrated optimization method using the GBD algorithm based on a linearized AC power flow model is proposed to resolve aforementioned drawback. The proposed method has been successfully applied to Garver’s six-bus system and the IEEE 30-bus system which are frequently used power systems for transmission expansion planning studies.

일반화된 네트워크에서 최단흐름생성경로문제 (The Shortest Flow-generating Path Problem in the Generalized Network)

  • 정성진;정의석
    • 대한산업공학회지
    • /
    • 제23권3호
    • /
    • pp.487-500
    • /
    • 1997
  • In this paper, we introduce the shortest flow-generating path problem in the generalized network. As the simplest generalized network model, this problem captures many of the most salient core ingredients of the generalized network flows and so it provides both a benchmark and a point of departure for studying more complex generalized network models. We show that the generalized label-correcting algorithm for the shortest flow-generating path problem has O(mn) time complexity if it starts with a good point and also propose an O($n^3m^2$) algorithm for finding a good starting point. Hence, the shortest flow-generating path problem is solved in O($n^3m^2$) time.

  • PDF

일반화된 오리피스의 유량예측 상관식 및 유량선도 (A Generalized Flow Model and Flow Charts for Predicting Mass Flow Rate through Short Tube Orifices)

  • 최종민;김용찬;곽재수;권병철
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.895-900
    • /
    • 2004
  • With the phaseout of CFC and HCFC refrigerants, refrigeration and heat pump systems must be redesigned to match and improve system performance with alternative refrigerants. A generalized flow model for predicting mass flow rate through short tube orifices is derived from a power law form of dimensionless parameters generated by Pi-theorem. The database for developing the correlation includes extensive experimental data for R12, R22, R134a, R407C, R410A, and R502 from the open literature. The correlation yields an average deviation of $0.3\%$ and a standard deviation of $6.1\%$ based on the present database. In addition, rating charts for predicting refrigerant flow rate through short tube orifices are generated for R12, R22, R134a, R407C, R410A, and R502.

덕산온천 지역의 수리적 성질 (Hydraulic Properties of Duksan Hot-spring Area)

  • 함세영;조병욱;성익환
    • 지질공학
    • /
    • 제9권2호
    • /
    • pp.101-118
    • /
    • 1999
  • 본 연구는 덕산온천내에 수행된 28개 양수시험자료를 종합하여 덕산온천의 수리적 특성 및 매개변수를 파악하였다. 프락탈 모델, 누수성 프락탈 모델 그리고 정상류의 이중공극 프락탈 모델을 이용한 양수시험분석 결과, 대체로 온천의 중심부에서는 1.9 또는 2.0의 유동차원을 보이며, 주변부에서는 1.5∼l.7의 유동차원을 보인다. 2.0차원의 경우에, 투수량계수와 대수층 손실에 의한 산출계수의 상관성이 총 수위강하를 이용한 비양수량의 상관성보다 훨씬 높게 나타난다. 그러나, 1.9차원의 경우에는 일반화 투수량계수와 산출계수간의 상관성이 일반화 투수량계수와 비양수량간의 상관성과 비슷하게 나타나며 상관계수도 높게 나타난다.

  • PDF

Generalized Preferential Flow Model (GPFM)의 개념과 적용사례 연구 (Concept and Application of Generalized Preferential Flow Model (GPFM))

  • 김영진;타모 스테인휴이스;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권5호
    • /
    • pp.33-36
    • /
    • 2007
  • 최근 들어 preferential flow같은 현장조건의 불균질한 매질을 이동하는 지하수 거동해석에 이류 분산 방정식을 적용하는데 많은 문제점들이 제기되어 왔다. 이에 따라 Kim 등(2005)은 최소한의 모형인자로 preferential flow 경로를 통한 토양지하수의 흐름을 예측할 수 있는 간단한 모형을 개발한 바 있다. Kim 등(2005)이 제시한 Generalized Preferential Flow Model(GPFM)은 토양을 표층주변의 분배 층(distribution layer)과 그 밑의 운반구역(conveyance zone)으로 나누어 거동을 예측하고 있다. 본 연구에서는 GPFM을 간단히 소개하고 기존의 다른 실험결과에 적용한 후 이류분산방정식(CDM)과의 비교를 통해 모형을 검증해 보고자 하였다. 기존에 발표된 두 개의 실험값에 GPFM을 적용해본 결과, GPFM은 세 가지 인자-유효함수비, 유속, 분산계수-를 입력하여 silty 및 sandy loam 토양 내 추적자의 파과곡선을 잘 예측하였다. CDM을 이용한 예측 값과 비교한 결과 GPFM과 CDM 모두 실제 관측된 파과곡선과 일치된 경향을 보였으나, GPFM에 의해 추측된 인자들이 더 현실적으로 가능한 값을 나타내었다. 인용된 두 실험값에 GPFM을 적용할 경우 예측 값에 가장 영향을 끼친 인자는 유효함수비로 나타났는데, 이는 Kim 등(2005)이 같은 종류의 토양에서 유속이 GPFM의 결과에 가장 영향을 끼쳤다고 보고한 것에 비해, 다른 성질의 토양에서는 유효 함수비가 가장 결정적인 인자임을 보여준다. 본 연구를 통해 GPFM이 이용하기가 쉽고 여러 가지 현장조건에 적용성이 높아 preferential flow 경로를 통한 토양지하수의 흐름을 예측할 수 있는 유용한 도구임을 확인하였다.

선형터빈 익렬의 익단간극유동에 대한 수치해석적 연구 (Numerical simulation of tip clearance flows through linear turbine cascades)

  • 이훈구;유정열
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.813-821
    • /
    • 1997
  • Three-dimensional turbulent incompressible flow through the tip clearance of a linear turbine rotor cascade with high turning angle has been analyzed numerically. As a preliminary study to predict the tip clearance loss realistically, a generalized k-.epsilon. model derived by RNG (renormalized group) method is used for the modeling of Reynolds stresses to account for the strain rate of turbulent flow. The effects of the tip clearance flow on the passage vortex, the total pressure loss are considered qualitatively. The existences of vena contract and tip clearance vortex have been confirmed and it has been shown that as the size of the tip clearance increases, the accumulated flow through the tip clearance and the total pressure loss downstream of the cascade increase.

극초음속 희박유동 해석을 위한 축대칭 다화학종 GH 방정식의 개발 (EVELOPMENT OF AXISYMMETRIC MULTI-SPECIES GH EQUATION FOR HYPERSONIC RAREFIED FLOW ANALYSES)

  • 안재완;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.84-91
    • /
    • 2008
  • Generalized hydrodynamic (GH) theory for multi-species gas and the computational models are developed for the numerical simulation of hypersonic rarefied gas flow on the basis of Eu's GH theory. The rotational non-equilibrium effect of diatomic molecules is taken into account by introducing excess normal stress associated with the bulk viscosity. The numerical model for the diatomic GH theory is developed and tested. Moreover, with the experience of developing the dia-tomic GH computational model, the GH theory is extended to a multi-species gas including 5 species; O$_2$, N$_2$, NO, O, N. The multi-species GH model includes diffusion relation due to the molecular collision and thermal phenomena. Two kinds of GH models are developed for an axisymmetric flow solver. By compar-ing the computed results of diatomic and multi-species GH theories with those of the Navier-Stokes equations and the DSMC results, the accuracy and physical consistency of the GH computational models are examined.

  • PDF

극초음속 희박유동 해석을 위한 축대칭 다화학종 GH 방정식의 개발 (EVELOPMENT OF AXISYMMETRIC MULTI-SPECIES GH EQUATION FOR HYPERSONIC RAREFIED FLOW ANALYSES)

  • 안재완;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.84-91
    • /
    • 2008
  • Generalized hydrodynamic (GH) theory for multi-species gas and the computational models are developed for the numerical simulation of hypersonic rarefied gas flow on the basis of Eu's GH theory. The rotational non-equilibrium effect of diatomic molecules is taken into account by introducing excess normal stress associated with the bulk viscosity. The numerical model for the diatomic GH theory is developed and tested. Moreover, with the experience of developing the dia-tomic GH computational model, the GH theory is extended to a multi-species gas including 5 species; $O_2,\;N_2$, NO, O, N. The multi-species GH model includes diffusion relation due to the molecular collision and thermal phenomena. Two kinds of GH models are developed for an axisymmetric flow solver. By compar-ing the computed results of diatomic and multi-species GH theories with those of the Navier-Stokes equations and the DSMC results, the accuracy and physical consistency of the GH computational models are examined.

  • PDF

난류 경계층 유동에서 입자의 확산과 스핀의 영향 (Particle Dispersion and Effect of Spin in the Turbulent Boundary Layer Flow)

  • 김병구;이창훈
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we develope a dispersion model based on the Generalized Langevin Model. Thomson's well-mixed condition is the well known criterion to determine particle dispersion. But, it has 'non-uniqueness problem'. To resolve this, we adopt a turbulent model which is a new approach in this field of study. Our model was greatly simplified under the self-similarity condition, leaving model only two model constants $C_{0}$ and ${\gamma}$$_{5}$ that control the dispersion and spin which measures rotational property of the Lagrangian particle trajectory. We investigated the sign of spin as well as magnitude by using the Direct Numerical Simulation. Model calculations were performed on the neutrally stable boundary layer flow. We found that spin has weak effect on the particle dispersion but it shows the significant effect on the horizontal flux compared to the zero-spin model.

EFFECT OF FLOW UNSTEADINESS ON DISPERSION IN NON-NEWTONIAN FLUID IN AN ANNULUS

  • NAGARANI, P.;SEBASTIAN, B.T.
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.241-260
    • /
    • 2017
  • An analysis is made to study the solute transport in a Casson fluid flow through an annulus in presence of oscillatory flow field and determine how this flow influence the solute dispersion along the annular region. Axial dispersion coefficient and the mean concentration expressions are calculated using the generalized dispersion model. Dispersion coefficient in oscillatory flow is found to be a function of frequency parameter, Schmidt number, and the pressure fluctuation component besides its dependency on yield stress of the fluid, annular gap and time in the case of steady flow. Due to the oscillatory nature of the flow, the dispersion coefficient changes cyclically and the amplitude and magnitude of the dispersion increases initially with time and reaches a non - transient state after a certain critical time. This critical value varies with frequency parameter and independent of the other parameters. It is found that the presence of inner cylinder and increase in the size of the inner cylinder inhibits the dispersion process. This model may be used in understanding the dispersion phenomenon in cardiovascular flows and in particular in catheterized arteries.