• Title/Summary/Keyword: Generalized extreme value distribution

Search Result 122, Processing Time 0.024 seconds

Extreme Quantile Estimation of Losses in KRW/USD Exchange Rate (원/달러 환율 투자 손실률에 대한 극단분위수 추정)

  • Yun, Seok-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.803-812
    • /
    • 2009
  • The application of extreme value theory to financial data is a fairly recent innovation. The classical annual maximum method is to fit the generalized extreme value distribution to the annual maxima of a data series. An alterative modern method, the so-called threshold method, is to fit the generalized Pareto distribution to the excesses over a high threshold from the data series. A more substantial variant is to take the point-process viewpoint of high-level exceedances. That is, the exceedance times and excess values of a high threshold are viewed as a two-dimensional point process whose limiting form is a non-homogeneous Poisson process. In this paper, we apply the two-dimensional non-homogeneous Poisson process model to daily losses, daily negative log-returns, in the data series of KBW/USD exchange rate, collected from January 4th, 1982 until December 31 st, 2008. The main question is how to estimate extreme quantiles of losses such as the 10-year or 50-year return level.

A data-adaptive maximum penalized likelihood estimation for the generalized extreme value distribution

  • Lee, Youngsaeng;Shin, Yonggwan;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.493-505
    • /
    • 2017
  • Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.

Analysis of Extreme Values of Daily Percentage Increases and Decreases in Crude Oil Spot Prices (국제현물원유가의 일일 상승 및 하락율의 극단값 분석)

  • Yun, Seok-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.835-844
    • /
    • 2010
  • Tools for statistical analysis of extreme values include the classical annual maximum method, the modern threshold method and variants improving the second one. While the annual maximum method is to t th generalized extreme value distribution to the annual maxima of a time series, the threshold method is to the generalized Pareto distribution to the excesses over a high threshold from the series. In this paper we deal with the Poisson-GPD method, a variant of the threshold method with a further assumption that the total number of exceedances follows the Poisson distribution, and apply it to the daily percentage increases and decreases computed from the spot prices of West Texas Intermediate, which were collected from January 4th, 1988 until December 31st, 2009. According to this analysis, the distribution of daily percentage increases as well as decreases turns out to have a heavy tail, unlike the normal distribution, which coincides well with the general phenomenon appearing in the analysis of lots of nowaday nancial data.

The transmuted GEV distribution: properties and application

  • Otiniano, Cira E.G.;de Paiva, Bianca S.;Neto, Daniele S.B. Martins
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.239-259
    • /
    • 2019
  • The transmuted generalized extreme value (TGEV) distribution was first introduced by Aryal and Tsokos (Nonlinear Analysis: Theory, Methods & Applications, 71, 401-407, 2009) and applied by Nascimento et al. (Hacettepe Journal of Mathematics and Statistics, 45, 1847-1864, 2016). However, they did not give explicit expressions for all the moments, tail behaviour, quantiles, survival and risk functions and order statistics. The TGEV distribution is a more flexible model than the simple GEV distribution to model extreme or rare events because the right tail of the TGEV is heavier than the GEV. In addition the TGEV distribution can adjusted various forms of asymmetry. In this article, explicit expressions for these measures of the TGEV are obtained. The tail behavior and the survival and risk functions were determined for positive gamma, the moments for nonzero gamma and the moment generating function for zero gamma. The performance of the maximum likelihood estimators (MLEs) of the TGEV parameters were tested through a series of Monte Carlo simulation experiments. In addition, the model was used to fit three real data sets related to financial returns.

Performance Analysis of Economic VaR Estimation using Risk Neutral Probability Distributions

  • Heo, Se-Jeong;Yeo, Sung-Chil;Kang, Tae-Hun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.757-773
    • /
    • 2012
  • Traditional value at risk(S-VaR) has a difficulity in predicting the future risk of financial asset prices since S-VaR is a backward looking measure based on the historical data of the underlying asset prices. In order to resolve the deficiency of S-VaR, an economic value at risk(E-VaR) using the risk neutral probability distributions is suggested since E-VaR is a forward looking measure based on the option price data. In this study E-VaR is estimated by assuming the generalized gamma distribution(GGD) as risk neutral density function which is implied in the option. The estimated E-VaR with GGD was compared with E-VaR estimates under the Black-Scholes model, two-lognormal mixture distribution, generalized extreme value distribution and S-VaR estimates under the normal distribution and GARCH(1, 1) model, respectively. The option market data of the KOSPI 200 index are used in order to compare the performances of the above VaR estimates. The results of the empirical analysis show that GGD seems to have a tendency to estimate VaR conservatively; however, GGD is superior to other models in the overall sense.

Estimation of Design Rainfall Using 3 Parameter Probability Distributions (3변수 확률분포에 의한 설계강우량 추정)

  • Lee, Soon Hyuk;Maeng, Sung Jin;Ryoo, Kyong Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.595-598
    • /
    • 2004
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.

  • PDF

Regional flood frequency analysis of extreme rainfall in Thailand, based on L-moments

  • Thanawan Prahadchai;Piyapatr Busababodhin;Jeong-Soo Park
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.37-53
    • /
    • 2024
  • In this study, flood records from 79 sites across Thailand were analyzed to estimate flood indices using the regional frequency analysis based on the L-moments method. Observation sites were grouped into homogeneous regions using k-means and Ward's clustering techniques. Among various distributions evaluated, the generalized extreme value distribution emerged as the most appropriate for certain regions. Regional growth curves were subsequently established for each delineated region. Furthermore, 20- and 100-year return values were derived to illustrate the recurrence intervals of maximum rainfall across Thailand. The predicted return values tend to increase at each site, which is associated with growth curves that could describe an increasing long-term predictive pattern. The findings of this study hold significant implications for water management strategies and the design of flood mitigation structures in the country.

Estimation of Design Rainfall by the Regional Frequency Analysis - On the method of L-moments - (지역화빈도분석에 의한 설계강우량 추정 - L-모맨트법을 중심으로 -)

  • Lee, Soon-Hyuk;Park, Jong-Hwa;Ryoo, Kyong-Sik;Jee, Ho-Keun;Jeon, Taek-Ki;Shin, Yong-Hee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.319-323
    • /
    • 2001
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among apt]lied distributions. regional and at-site parameters of the Generalized extreme value distribution were estimated by the method of L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

  • PDF

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques(l ) - On the method of L-moments- (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정(II) - L-모멘트법을 중심으로 -)

  • 이순혁;박종화;류경식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.70-82
    • /
    • 2001
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among applied distributions. Regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the legions and consecutive durations were derived by the regional frequency analysis.

  • PDF