• Title/Summary/Keyword: Generalized extreme value (GEV) distribution

Search Result 74, Processing Time 0.026 seconds

Fragility Assessment of Agricultural Facilities Subjected to Volcanic Ash Fall Hazards (농업시설물에 대한 화산재 취약도 평가)

  • Ham, Hee Jung;Choi, Seung Hun;Lee, Sungsu;Kim, Ho-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.493-500
    • /
    • 2014
  • This paper presents findings from the assessment of the volcanic ash fragility for multi-hazard resisting vinyl greenhouse and livestock shed among the agricultural facilities. The volcanic ash fragility was evaluated by using a combination of the FOSM (first-order second-moment) method, available statistics of volcanic load, facility specifications, and building code. In this study, the evaluated volcanic ash fragilities represent the conditional probability of failure of the agricultural facilities over the full range of volcanic ash loads. For the evaluation, 6 types(ie., 2 single span, 2 tree crop, and 2 double span types) of multi-hazard resisting vinyl greenhouses and 3 types(ie., standard, coast, and mountain types) of livestock sheds are considered. All volcanic ash fragilities estimated in this study were fitted by using parameters of the GEV(generalized extreme value) distribution function, and the obtained parameters were complied into a database to be used in future. The volcanic ash fragilities obtained in this study are planning to be used to evaluate risk by volcanic ash when Mt. Baekdu erupts.

Performance of VaR Estimation Using Point Process Approach (점과정 기법을 이용한 VaR추정의 성과)

  • Yeo, Sung-Chil;Moon, Seoung-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.471-485
    • /
    • 2010
  • VaR is used extensively as a tool for risk management by financial institutions. For convenience, the normal distribution is usually assumed for the measurement of VaR, but recently the method using extreme value theory is attracted for more accurate VaR estimation. So far, GEV and GPD models are used for probability models of EVT for the VaR estimation. In this paper, the PP model is suggested for improved VaR estimation as compared to the traditonal EV models such as GEV and GPD models. In view of the stochastic process, the PP model is regarded as a generalized model which include GEV and GPD models. In the empirical analysis, the PP model is shown to be superior to GEV and GPD models for the performance of VaR estimation.

Analysis on Characteristics of Variation in Flood Flow by Changing Order of Probability Weighted Moments (확률가중모멘트의 차수 변화에 따른 홍수량 변동 특성 분석)

  • Maeng, Seung-Jin;Hwang, Ju-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1009-1019
    • /
    • 2009
  • In this research, various characteristics of South Korea's design flood have been examined by deriving appropriate design flood, using data obtained from careful observation of actual floods occurring in selected main watersheds of the nation. 19 watersheds were selected for research in Korea. The various characteristics of annual rainfall were analyzed by using a moving average method. The frequency analysis was decided to be performed on the annual maximum flood of succeeding one year as a reference year. For the 19 watersheds, tests of basic statistics, independent, homogeneity, and outlier were calculated per period of annual maximum flood series. By performing a test using the LH-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, among applied distributions of Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distribution was found to be adequate compared with other probability distributions. Parameters of GEV distribution were estimated by L, L1, L2, L3 and L4-moment method based on the change in the order of probability weighted moments. Design floods per watershed and the periods of annual maximum flood series were derived by GEV distribution. According to the result of the analysis performed by using variation rate used in this research, it has been concluded that the time for changing the design conditions to ensure the proper hydraulic structure that considers recent climate changes of the nation brought about by global warming should be around the year 2002.

Derivatio of Optimal Design Flood by L-Moments and LH-Moments(II) - On the method of LH-Moments - (L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도(II)-LH-모멘트법을 중심으로)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.41-50
    • /
    • 1999
  • Derivatio of reasonable design floods was attempted by comparative analysis of design floods derived by Generalized Extreme Value(GEV) distribution using methods of L-moments and LH-moments for the annual maximum series at ten watersheds along Han, Nagdong. Geum, Yeongsan and Seomjin river systems, LH-coefficient of variation, LH-skewness and Lh-kurtosis were calcualted by KH-moment ration respectively. Paramenters were estimated by the Method of LH-Moments, Design floods obtained by Method of LH-Moments using different methods for plotting positionsi n GEV distribution and design floods were compared with those obtained using the Method of L-Moments by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results was found that design floods derived by the method of L-Moments and LH-Moments using Cunnane plotting position formula in the GEV distribution are much closer to those of the observed data in comparison with those obtained by methods of L-moments and LH-moments using the other formula for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors. In viewpoint of the fact that hydrqulic structures including dams and levees are genrally using design floods with the return period of two hundred years or so, design floods derived by LH-Moments are seemed to be more reasonable than those of L-Moments in the GEV distribution.

  • PDF

Derivation of Optimal Distribution for the Frequency Analysis of Extreme Flood using LH-Moments (LH-모멘트에 의한 극치홍수량의 빈도분석을 위한 적정분포형 유도)

  • Maeng, Sung-Jin;Lee, Soon-Hyuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.229-232
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study.

  • PDF

Incorporation of Historical Data into GEV Distribution with EMA (GEV 분포와 역사 자료 이용 알고리즘 EMA의 접목)

  • Sung, Jang-Hyun;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.209-213
    • /
    • 2008
  • 재현기간이 수백년 이상인 이상홍수의 초과확률을 추정하기 위해서는 재현기간 이상의 홍수자료를 이용해 내삽(interpolation)을 해야 하지만 현재 우리나라의 체계적(systematic) 관측자료 기간은 이에 훨씬 미치지 못한다. 따라서, 역사 자료(historical data)를 이용해 자료 길이를 확장하는 방법, 홍수자료에 비해 비교적긴 강우자료와 유출 모형에 의한 합성자료를 이용하는 방법 등이 사용되어 왔다. 본 연구에서는 역사 자료와 체계적 관측자료를 효율적으로 결합할 수 있는 EMA(Expected Moment Algorithm) 기법을 연구하였다. EMA는 Cohn 등(1997)에 의해 제안된 방법으로 미국의 공식 분포인 LP3(Log-Pearson type 3) 분포를 대상으로 반복 계산을 통해 매개변수를 추정하는 기법으로서 본 연구에서는 LP3 분포 대신에 최근 국내 홍수빈도해석 시 많이 쓰이고 있는 GEV(Generalized Extreme Value) 분포를 대상으로 EMA 절차를 이론적으로 유도하였다.

  • PDF

Derivation of Design Flood by L-Moments and LH-Moments in GEV distributiion (L-모멘트 및 LH-모멘트에 의한 GEV 분포모형의 실계홍수량의 유도)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.479-485
    • /
    • 1999
  • This study was conducted to derived design floods by Generalized Extreme Value(GEV) distributiion for the annual maximum series at ten watersheds along Han, Nagdong, Geum , Yeongsan and Seomjin river systems. Adequency for the analysis of flood data used in this study was established by the test of Independence, Homogeneity , detection of Outliers. Coefficient of variation , skewness and kurtosis were calculated by the L-Moment, and LH-Moment ratio respectively. Parameters were estimated by the Method of L-Method of LH-Moment. Design floods obtained by Method of L-Moments and LH-Moments using different methods for plotting positions in GEV distributions and were compared with those obatined using the Method of L-Moments and LH-Moments by the Relative Mean Errors and Realtive Absoulte Errors. It was found that desgin floods derived by the method of L-Moments and LH-Moments using Cunnane plotting position foumula in the GEV distribution are much closer to those of the observed data in comparison with those obtained by methods of L-moments and LH-moments using the other formula for poltting postions from the viewpoint of Relative Mean Errors and Relative Absoulte Errors. In view of the fact that hydraulic structures indcluding dams and levees are generally usiong design floods with the return period of two hundred years or so, design floods derived by LH-Moments are seemed to be more reasonable than those of L-Moments in the GEV distribution.

  • PDF

Derivation of Probability Plot Correlation Coefficient Test Statistics and Regression Equation for the GEV Model based on L-moments (L-모멘트 법 기반의 GEV 모형을 위한 확률도시 상관계수 검정 통계량 유도 및 회귀식 산정)

  • Ahn, Hyunjun;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • One of the important problem in statistical hydrology is to estimate the appropriated probability distribution for a given sample data. For the problem, a goodness-of-fit test is conducted based on the similarity between estimated probability distribution and assumed theoretical probability distribution. Probability plot correlation coefficient test (PPCC) is one of the goodness-of-fit test method. PPCC has high rejection power and its application is simple. In this study, test statistics of PPCC were derived for generalized extreme value distribution (GEV) models based on L-moments and these statistics were suggested by the multiple and nonlinear regression equations for its usability. To review the rejection power of the newly proposed method in this study, Monte Carlo simulation was performed with other goodness-of-fit tests including the existing PPCC test. The results showed that PPCC-A test which is proposed in this study demonstrated better rejection power than other methods, including the existing PPCC test. It is expected that the new method will be helpful to estimate the appropriate probability distribution model.

Derivation of Optimal Design Flood by L-Moments and LB-Moments ( I ) - On the method of L-Moments - (L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도( I ) - L-모멘트법을 중심으로 -)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.45-57
    • /
    • 1998
  • This study was conducted to derive optimal design floods by Generalized Extreme Value (GEV) distribution for the annual maximum series at ten watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was established by the tests of Independence, Homogeneity, detection of Outliers. L-coefficient of variation, L-skewness and L-kurtosis were calculated by L-moment ratio respectively. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in GEV distribution were compared by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results were analyzed and summarized as follows. 1. Adequacy for the analysis of flood data was acknowledged by the tests of Independence, Homogeneity and detection of Outliers. 2. GEV distribution used in this study was found to be more suitable one than Pearson type 3 distribution by the goodness of fit test using Kolmogorov-Smirnov test and L-Moment ratios diagram in the applied watersheds. 3. Parameters for GEV distribution were estimated using Methods of Moments and L-Moments. 4. Design floods were calculated by Methods of Moments and L-Moments in GEV distribution. 5. It was found that design floods derived by the method of L-Moments using Weibull plotting position formula in GEV distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors.

  • PDF

Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events (극치강우사상을 포함한 강우빈도분석의 불확실성 분석)

  • Kim, Sang-Ug;Lee, Kil-Seong;Park, Young-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.337-351
    • /
    • 2010
  • There is a growing dissatisfaction with use of conventional statistical methods for the prediction of extreme events. Conventional methodology for modeling extreme event consists of adopting an asymptotic model to describe stochastic variation. However asymptotically motivated models remain the centerpiece of our modeling strategy, since without such an asymptotic basis, models have no rational for extrapolation beyond the level of observed data. Also, this asymptotic models ignored or overestimate the uncertainty and finally decrease the reliability of uncertainty. Therefore this article provide the research example of the extreme rainfall event and the methodology to reduce the uncertainty. In this study, the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) and the MLE (Maximum Likelihood Estimation) methods using a quadratic approximation are applied to perform the at-site rainfall frequency analysis. Especially, the GEV distribution and Gumbel distribution which frequently used distribution in the fields of rainfall frequency distribution are used and compared. Also, the results of two distribution are analyzed and compared in the aspect of uncertainty.