• 제목/요약/키워드: Generalized extreme value (GEV) distribution

검색결과 74건 처리시간 0.023초

극단치 분포의 모수 추정방법 비교 연구(회귀 분석법을 기준으로) (Comparison Study of Parameter Estimation Methods for Some Extreme Value Distributions (Focused on the Regression Method))

  • 우지용;김명석
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.463-477
    • /
    • 2009
  • 극단치 분포의 모수 추정방법으로 최우추정법, 확률가중적률법, 회귀분석법은 기존 연구에서 활발하게 적용되어져 왔다. 그러나 이들 세 가지 추정방법 가운데, 회귀분석법의 우수성은 엄격하게 평가되어진 적이 없다. 본 논문에서는 몬테칼로 시뮬레이션을 통하여 Generalized Extreme Value(GEV) 분포와 Generalized Pareto(GP) 분포의 모수 추정에 회귀분석법 및 다른 추정방법을 적용하여 비교 연구한다. 시뮬레이션 결과, 표본의 크기가 작은 경우 회귀분석 법은 GEV 분포의 위치모수 추정시 편의 측면과 효율성 측면에서 다른 방법보다 우수한 경향을 나타내었다. GP 분포의 규모모수 추정시에는 표본의 크기 가 작을 경우 회귀분석법이 다른 방법보다 작은 편의를 나타내었다. 회귀분석법은 표본의 크기 가 작거나 적당히 큰 경우에도 GEV 분포나 GP 분포의 형태모수 추정시에 형태모수의 값이 -0.4일 경우, 다른 방법보다 우수한 경향을 나타내었다.

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석 (A Bayesian Analysis of Return Level for Extreme Precipitation in Korea)

  • 이정진;김남희;권혜지;김용구
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.947-958
    • /
    • 2014
  • 집중호우의 특성을 이해하는 것은 수문관리 및 재해방재 등에서 매우 중요하다. 특히 반환주기는 이러한 집중호우의 특성을 나타내는 측정치로 자주 사용된다. 본 논문에서는 베이지안 계층적 모형을 이용하여 강우의 반환주기에 대한 공간구조를 분석하였다. 먼저 국내 62개 지점에서 측정한 강우 강도을 기초로 하여 연간 일일 최대강우량과 특정한 수준을 초과하는 강우량에 대해서 generalized extreme value(GEV)와 generalized Pareto distribution(GPD)를 각각 가정하여 추정하였다. 집중호우 반환주기에 대한 공간구조는 이 GEV 분포와 GPD 분포의 모수에 공간구조를 가지는 다변량 정규분포를 이용하여 설명하였다. 제안된 모형을 국내 76개 지역에서 39년간 측정된 일별 강우량 관측자료에 적용하였다.

Generalized Extreme Value 분포 자료의 교차상관과 L-모멘트 추정값의 교차상관의 관계 유도 (Derivation of Relationship between Cross-site Correlation among data and among Estimators of L-moments for Generalize Extreme value distribution)

  • 정대일
    • 대한토목학회논문집
    • /
    • 제29권3B호
    • /
    • pp.259-267
    • /
    • 2009
  • GEV분포는 세계 여러 나라에서 홍수와 극한강우 등의 빈도분포로 널리 활용되고 있다. L-모멘트법은 GEV분포의 매개변수 추정을 위해 일반적으로 사용되고 있는 추정법이다. 본 연구에서는 Monte Carlo 실험을 이용하여 GEV분포를 따르는 서로 다른 두 지점의 자료의 교차상관계수를 이용하여 L-모멘트 추정값인 L-변동계수와 L-왜도계수들 간의 교차상관계수를 Simple Power 함수를 이용하여 유도하였다. 실험과정에서 생성된 비현실적이며 실험결과에 큰 영향을 미치는 음수값들을 배재한 GEV+분포를 이용하였다. 결과로, Simple Power 함수가 두지점간 자료의 교차상관과 L-모멘트 추정값들간의 교차상관 계수의 관계를 잘 모사하고 있음을 확인하였다. 다양한 GEV 분포의 매개변수 조합에 대한 Simple Power 함수의 매개변수 추정값과 정확성은 표로 제시하였다. 또한 위 연구결과를 활용할 수 있는 Generalised Least Square(GLS) 지역회귀 기법에 대해 설명하였다. 따라서 본 연구에서 도출된 관계식은 향후 GLS 회귀식을 이용한 GEV 분포의 지역 매개변수를 추정하는데 있어 L-모멘트 추정값들간의 정확한 교차상관관계를 제시할 수 있을 것으로 기대한다.

기후변화에 따른 하수관거시설의 계획우수량 산정을 위한 일반극치분포 분석 (Analysis of Generalized Extreme Value Distribution to Estimate Storm Sewer Capacity Under Climate Change)

  • 이학표;류재나;유순유;박규홍
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.321-329
    • /
    • 2012
  • In this study, statistical analysis under both stationary and non-stationary climate was conducted for rainfall data measured in Seoul. Generalised Extreme Value (GEV) distribution and Gumbel distribution were used for the analysis. Rainfall changes under the non-stationary climate were estimated by applying time variable (t) to location parameter (${\xi}$). Rainfall depths calculated in non-stationary climate increased by 1.1 to 6.2mm and 1.0 to 4.6mm for the GEV distribution and gumbel distribution respectively from those stationary forms. Changes in annual maximum rainfall were estimated with rate of change in the location parameter (${\xi}1{\cdot}t$), and temporal changes of return period were predicted. This was also available for re-evaluating the current sewer design return period. Design criteria of sewer system was newly suggested considering life expectance of the system as well as temporal changes in the return period.

Extreme Value Analysis of Statistically Independent Stochastic Variables

  • Choi, Yongho;Yeon, Seong Mo;Kim, Hyunjoe;Lee, Dongyeon
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.222-228
    • /
    • 2019
  • An extreme value analysis (EVA) is essential to obtain a design value for highly nonlinear variables such as long-term environmental data for wind and waves, and slamming or sloshing impact pressures. According to the extreme value theory (EVT), the extreme value distribution is derived by multiplying the initial cumulative distribution functions for independent and identically distributed (IID) random variables. However, in the position mooring of DNVGL, the sampled global maxima of the mooring line tension are assumed to be IID stochastic variables without checking their independence. The ITTC Recommended Procedures and Guidelines for Sloshing Model Tests never deal with the independence of the sampling data. Hence, a design value estimated without the IID check would be under- or over-estimated because of considering observations far away from a Weibull or generalized Pareto distribution (GPD) as outliers. In this study, the IID sampling data are first checked in an EVA. With no IID random variables, an automatic resampling scheme is recommended using the block maxima approach for a generalized extreme value (GEV) distribution and peaks-over-threshold (POT) approach for a GPD. A partial autocorrelation function (PACF) is used to check the IID variables. In this study, only one 5 h sample of sloshing test results was used for a feasibility study of the resampling IID variables approach. Based on this study, the resampling IID variables may reduce the number of outliers, and the statistically more appropriate design value could be achieved with independent samples.

한국 주식 수익률에 대한 Extreme 분포의 적용 가능성에 관하여 (On the Applicability of the Extreme Distributions to Korean Stock Returns)

  • 김명석
    • 경영과학
    • /
    • 제24권2호
    • /
    • pp.115-126
    • /
    • 2007
  • Weekly minima of daily log returns of Korean composite stock price index 200 and its five industry-based business divisions over the period from January 1990 to December 2005 are fitted using two block-based extreme distributions: Generalized Extreme Value(GEV) and Generalized Logistic(GLO). Parameters are estimated using the probability weighted moments. Applicability of two distributions is investigated using the Monte Carlo simulation based empirical p-values of Anderson Darling test. Our empirical results indicate that both the GLO and GEV models seem to be comparably applicable to the weekly minima. These findings are against the evidences in Gettinby et al.[7], who claimed that the GEV model was not valid in many cases, and supported the significant superiority of the GLO model.

기후변화에 따른 주요 도시의 하수도 침수 재현기간 예측 (Prediction of Return Periods of Sewer Flooding Due to Climate Change in Major Cities)

  • 박규홍;유순유;뱜바도지 엘베자르갈
    • 상하수도학회지
    • /
    • 제30권1호
    • /
    • pp.41-49
    • /
    • 2016
  • In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using generalized extreme value (GEV) distribution and Gumbel distribution models with rainfall data collected in major cities of Korea to reevaluate the return period of sewer flooding in those cities. As a result, the probable rainfall for GEV and Gumbel distribution in non-stationary state both increased with time(t), compared to the stationary probable rainfall. Considering the reliability of ${\xi}_1$, a variable reflecting the increase of storm events due to climate change, the reliability of the rainfall duration for Seoul, Daegu, and Gwangju in the GEV distribution was over 90%, indicating that the probability of rainfall increase was high. As for the Gumbel distribution, Wonju, Daegu, and Gwangju showed the higher reliability while Daejeon showed the lower reliability than the other cities. In addition, application of the maximum annual rainfall change rate (${\xi}_1{\cdot}t$) to the location parameter made possible the prediction of return period by time, therefore leading to the evaluation of design recurrence interval.