• Title/Summary/Keyword: Generalized Wiener stochastic process

Search Result 9, Processing Time 0.023 seconds

STOCHASTIC CALCULUS FOR ANALOGUE OF WIENER PROCESS

  • Im, Man-Kyu;Kim, Jae-Hee
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.335-354
    • /
    • 2007
  • In this paper, we define an analogue of generalized Wiener measure and investigate its basic properties. We define (${\hat}It{o}$ type) stochastic integrals with respect to the generalized Wiener process and prove the ${\hat}It{o}$ formula. The existence and uniqueness of the solution of stochastic differential equation associated with the generalized Wiener process is proved. Finally, we generalize the linear filtering theory of Kalman-Bucy to the case of a generalized Wiener process.

  • PDF

STOCHASTIC INTEGRAL OF PROCESSES TAKING VALUES OF GENERALIZED OPERATORS

  • CHOI, BYOUNG JIN;CHOI, JIN PIL;JI, UN CIG
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.167-178
    • /
    • 2016
  • In this paper, we study the stochastic integral of processes taking values of generalized operators based on a triple E ⊂ H ⊂ E, where H is a Hilbert space, E is a countable Hilbert space and E is the strong dual space of E. For our purpose, we study E-valued Wiener processes and then introduce the stochastic integral of L(E, F)-valued process with respect to an E-valued Wiener process, where F is the strong dual space of another countable Hilbert space F.

A FRESNEL TYPE CLASS ON FUNCTION SPACE

  • Chang, Seung-Jun;Choi, Jae-Gil;Lee, Sang-Deok
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.107-119
    • /
    • 2009
  • In this paper we define a Banach algebra on very general function space induced by a generalized Brownian motion process rather than on Wiener space, but the Banach algebra can be considered as a generalization of Fresnel class defined on Wiener space. We then show that several interesting functions in quantum mechanic are elements of the class.

  • PDF

THE PARTIAL DIFFERENTIAL EQUATION ON FUNCTION SPACE WITH RESPECT TO AN INTEGRAL EQUATION

  • Chang, Seung-Jun;Lee, Sang-Deok
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.47-60
    • /
    • 1997
  • In the theory of the conditional Wiener integral, the integrand is a functional of the standard Wiener process. In this paper we consider a conditional function space integral for functionals of more general stochastic process and the generalized Kac-Feynman integral equation. We first show that the existence of a partial differential equation. We then show that the generalized Kac-Feynman integral equation is equivalent to the partial differential equation.

  • PDF

GENERALIZED FOURIER-FEYNMAN TRANSFORM AND SEQUENTIAL TRANSFORMS ON FUNCTION SPACE

  • Choi, Jae-Gil;Chang, Seung-Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1065-1082
    • /
    • 2012
  • In this paper we first investigate the existence of the generalized Fourier-Feynman transform of the functional F given by $$F(x)={\hat{\nu}}((e_1,x)^{\sim},{\ldots},(e_n,x)^{\sim})$$, where $(e,x)^{\sim}$ denotes the Paley-Wiener-Zygmund stochastic integral with $x$ in a very general function space $C_{a,b}[0,T]$ and $\hat{\nu}$ is the Fourier transform of complex measure ${\nu}$ on $B({\mathbb{R}}^n)$ with finite total variation. We then define two sequential transforms. Finally, we establish that the one is to identify the generalized Fourier-Feynman transform and the another transform acts like an inverse generalized Fourier-Feynman transform.

TRANSLATION THEOREMS FOR THE ANALYTIC FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PATHS ON WIENER SPACE

  • Chang, Seung Jun;Choi, Jae Gil
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.147-160
    • /
    • 2018
  • In this article, we establish translation theorems for the analytic Fourier-Feynman transform of functionals in non-stationary Gaussian processes on Wiener space. We then proceed to show that these general translation theorems can be applied to two well-known classes of functionals; namely, the Banach algebra S introduced by Cameron and Storvick, and the space ${\mathcal{B}}^{(P)}_{\mathcal{A}}$ consisting of functionals of the form $F(x)=f({\langle}{\alpha}_1,x{\rangle},{\ldots},{\langle}{\alpha}_n,x{\rangle})$, where ${\langle}{\alpha},x{\rangle}$ denotes the Paley-Wiener-Zygmund stochastic integral ${\int_{0}^{T}}{\alpha}(t)dx(t)$.

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

Estimation of Residual Useful Life and Tracking of Real-time Damage Paths of Rubble-Mound Breakwaters Using Stochastic Wiener Process (추계학적 위너 확률과정을 이용한 경사제의 실시간 피해경로 추적과 잔류수명 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.147-160
    • /
    • 2020
  • A stochastic probabilistic model for harbor structures such as rubble-mound breakwater has been formulated by using the generalized Wiener process considering the nonlinearity of damage drift and its nonlinear uncertainty, by which the damage path with real-time can be tracked, the residual useful lifetime at some age can also be analyzed properly. The formulated stochastic model can easily calculate the probability of failure with the passage of time through the probability density function of cumulative damage. In particular, the probability density functions of residual useful lifetime of the existing harbor structures can be derived, which can take into account the current age, its present damage state and the future damage process to be occurred. By using the maximum likelihood method and the least square method together, the involved parameters in the stochastic model can be estimated. In the calibration of the stochastic model presented in this paper, the present results are very well similar with the results of MCS about tracking of the damage paths as well as evaluating of the density functions of the cumulative damage and the residual useful lifetime. MTTF and MRL are also evaluated exactly. Meanwhile, the stochastic probabilistic model has been applied to the rubble-mound breakwater. The related parameters can be estimated by using the experimental data of the cumulative damages of armor units measured as a function of time. The theoretical results about the probability density function of cumulative damage and the probability of failure are very well agreed with MCS results such that the density functions of the cumulative damage tend to move to rightward and the amounts of its uncertainty are increased as the elapsed time goes on. Thus, the probabilities of failure with the elapsed time are also increased sharply. Finally, the behaviors of residual useful lifetime have been investigated with the elapsed age. It is concluded for rubble-mound breakwaters that the probability density functions of residual useful lifetime tends to have a longer tail in the right side rather than the left side because of the gradual increases of cumulative damage of armor units. Therefore, its MRLs are sharply decreased after some age. In this paper, the special attentions are paid to the relationship of MTTF and MRL and the elapsed age of the existing structure. In spite of that the sum of the elapsed age and MRL must be equal to MTTF deterministically, the large difference has been shown as the elapsed age is increased which is due to the uncertainty of cumulative damage to be occurred in the future.

An One-factor VaR Model for Stock Portfolio (One-factor 모형을 이용한 주식 포트폴리오 VaR에 관한 연구)

  • Park, Keunhui;Ko, Kwangyee;Beak, Jangsun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.471-481
    • /
    • 2013
  • The current VaR Model based on J. P. Morgan's RiskMetrics has problem that actual loss exceeds VaR under unstable economic conditions because the current VaR Model can't re ect future economic conditions. In general, any corporation's stock price is determined by the rm's idiosyncratic factor as well as the common systematic factor that in uences all stocks in the portfolio. In this study, we propose an One-factor VaR Model for stock portfolio which is decomposed into the common systematic factor and the rm's idiosyncratic factor. We expect that the actual loss will not exceed VaR when the One-factor Model is implemented because the common systematic factor considering the future economic conditions is estimated. Also, we can allocate the stock portfolio to minimize the loss.