• Title/Summary/Keyword: Generalized Time Constant

Search Result 74, Processing Time 0.028 seconds

ANALYSIS ON GENERALIZED IMPACT ANGLE CONTROL GUIDANCE LAW

  • LEE, YONG-IN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.327-364
    • /
    • 2015
  • In this paper, a generalized guidance law with an arbitrary pair of guidance coefficients for impact angle control is proposed. Under the assumptions of a stationary target and a lag-free missile with constant speed, necessary conditions for the guidance coefficients to satisfy the required terminal constraints are obtained by deriving an explicit closed-form solution. Moreover, optimality of the generalized impact-angle control guidance law is discussed. By solving an inverse optimal control problem for the guidance law, it is found that the generalized guidance law can minimize a certain quadratic performance index. Finally, analytic solutions of the generalized guidance law for a first-order lag system are investigated. By solving a third-order linear time-varying ordinary differential equation, the blowing-up phenomenon of the guidance loop as the missile approaches the target is mathematically proved. Moreover, it is found that terminal misses due to the system lag are expressed in terms of the guidance coefficients, homing geometry, and the ratio of time-to-go to system time constant.

The Parametric Sensitivity Analyses of linear System Relative to the Characteristic Ratios of Coefficient(II) : K-Polynomial Case (계수의 특성비에 대한 선형계의 파라미터적 감도해석(II) : K-다항식의 경우)

  • 김영철;김근식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • Previously it has been shown that the all pole systems resulting good time responses can be characterized by so called K-polynomial. The polynomial is defined in terms of the principal characteristic ratio $\alpha_1$ and the generalized time constant $\tau$ . In this paper, Part II presents several sensitivity analyses of such systems with respect to $\alpha_1$ and $\tau$ changes. We first deal with the root sensitivity to the perturbation of $\alpha_1$ . By way of determining the unnormalized function sensitivity, both time response sensitivity and frequency response sensitivity are derived. Finally, the root sensitivity relative to $\tau$ change is also analyzed. These results provide some useful insight and background theory when we select of and l to compose a reference model of which denominator is a K-polynomial, which is illustrated by examples.

Undrained Creep Characteristics of Silty Sands and Comparative Study of Creep model (실트질 모래의 비배수 크리프특성 및 크리프 모델 비교연구)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In this study, A series of triaxial tests were performed under constant principal stress in order to interpret the undrained creep characteristics of silty sands. Although samples are non-plastic silty sands, the results of tests show that the creep deformation increasing over time. Based on the results of test, Singh-Mitchell model parameters and Generalized model coefficients were calculated. Generalized model showed slightly larger deformation in the primary creep range but secondary creep deformation was almost identical. Although Singh-Mitchell model showed relatively large errors compared to Generalized model because it uses the average of test results, but Singh-Mitchell model can be easily represented by three creep parameters.

ASYMPTOTIC RUIN PROBABILITIES IN A GENERALIZED JUMP-DIFFUSION RISK MODEL WITH CONSTANT FORCE OF INTEREST

  • Gao, Qingwu;Bao, Di
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2014
  • This paper studies the asymptotic behavior of the finite-time ruin probability in a jump-diffusion risk model with constant force of interest, upper tail asymptotically independent claims and a general counting arrival process. Particularly, if the claim inter-arrival times follow a certain dependence structure, the obtained result also covers the case of the infinite-time ruin probability.

Effect of Fluid Viscosity on the Suspension of a Single Particle in Channel Flow (채널 유동에서 점성이 단일 입자 혼합 유동의 suspension에 미치는 영향)

  • Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2009
  • Suspension of a single solid particle in a channel flow with a constant pressure gradient is studied numerically. The interaction of a circular particle with a surrounding Newtonian fluid is formulated using a combined formulation. Numerical results are presented using two dimensionless variables: the sedimentation Reynolds number and the generalized Froude number. From the present results, it has been shown that a solid particle is suspended at a smaller generalized Froude number as the viscosity of the surrounding fluid increases. The time taken for equilibrium position is found to be smaller as fluid viscosity increases when both : the sedimentation Reynolds number and the generalized Froude number are the same while, at the same situation, the dimensionless time taken for equilibrium position is to be nearly the same regardless of fluid viscosity when a dimensionless time variable is introduced

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam

  • Kaur, Iqbal;Lata, Parveen;Singh, Kulvinder
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.29-37
    • /
    • 2022
  • The present paper deals with the application of one dimensional piezoelectric materials in particular piezo-thermoelastic nanobeam. The generalized piezo-thermo-elastic theory with two temperature and Euler Bernoulli theory with small scale effects using nonlocal Eringen's theory have been used to form the mathematical model. The ends of nanobeam are considered to be simply supported and at a constant temperature. The mathematical model so formed is solved to obtain the non-dimensional expressions for lateral deflection, electric potential, thermal moment, thermoelastic damping and frequency shift. Effect of frequency and nonlocal parameter on the lateral deflection, electric potential, thermal moment with generalized piezothermoelastic theory are represented graphically using the MATLAB software. Comparisons are made with the different theories of thermoelasticity.

The Virtual Waiting Time of the M/G/1 Queue with Customers of n Types of Impatience

  • Bae Jongho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.289-294
    • /
    • 2004
  • We consider M/G/1 queue in which the customers are classified into n+1 classes by their impatience time. First, we analyze the model of two types of customers; one is the customer with constant impatience duration k and the other is patient customer. The expected busy period of the server and the limiting distribution of the virtual waiting time process are obtained. Then, the model is generalized to the one in which there are classes of customers according to their impatience duration.

  • PDF

Time-domain Approaches for Input Disturbance Observer

  • Kim, Kyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.22-25
    • /
    • 2005
  • In the paper, algorithms for disturbance observers are newly presented in the time-domain. Attention is paid to observing a ramp disturbance by introducing an integral term to the output equation of a constant disturbance observer. In order to reduce the sensitivity to the measurement noise, the disturbance observer is combined with the state observer. It will be shown that the estimation dynamics can be arbitrarily chosen by assigning the eigenvalues of a characteristic equation. Also, we provide the analysis of observer behaviors subject to non-ramp-style disturbances. Finally, we propose the generalized disturbance observer that accurately estimates disturbances of higher order in time series expansion.

  • PDF

Analysis of the M/Gb/1 Queue by the Arrival Time Approach (도착시점방법에 의한 M/Gb/1 대기행렬의 분석)

  • Chae, Kyung-Chul;Chang, Seok-Ho;Lee, Ho-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • We analyze bulk service $M/G^{b}/1$ queues using the arrival time approach of Chae et al. (2001). As a result, the decomposition property of the M/G/1 queue with generalized vacations is extended to the $M/G^{b}/1$ queue in which the batch size is exactly a constant b. We also demonstrate that the arrival time approach is useful for relating the time-average queue length PGF to that of the departure time, both for the $M/G^{b}/1$queue in which the batch size is as big as possible but up to the maximum of constant b. The case that the batch size is a random variable is also briefly mentioned.