• Title/Summary/Keyword: Generalized Pareto distribution

Search Result 64, Processing Time 0.022 seconds

Extreme value modeling of structural load effects with non-identical distribution using clustering

  • Zhou, Junyong;Ruan, Xin;Shi, Xuefei;Pan, Chudong
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.55-67
    • /
    • 2020
  • The common practice to predict the characteristic structural load effects (LEs) in long reference periods is to employ the extreme value theory (EVT) for building limit distributions. However, most applications ignore that LEs are driven by multiple loading events and thus do not have the identical distribution, a prerequisite for EVT. In this study, we propose the composite extreme value modeling approach using clustering to (a) cluster initial blended samples into finite identical distributed subsamples using the finite mixture model, expectation-maximization algorithm, and the Akaike information criterion; (b) combine limit distributions of subsamples into a composite prediction equation using the generalized Pareto distribution based on a joint threshold. The proposed approach was validated both through numerical examples with known solutions and engineering applications of bridge traffic LEs on a long-span bridge. The results indicate that a joint threshold largely benefits the composite extreme value modeling, many appropriate tail approaching models can be used, and the equation form is simply the sum of the weighted models. In numerical examples, the proposed approach using clustering generated accurate extrema prediction of any reference period compared with the known solutions, whereas the common practice of employing EVT without clustering on the mixture data showed large deviations. Real-world bridge traffic LEs are driven by multi-events and present multipeak distributions, and the proposed approach is more capable of capturing the tendency of tailed LEs than the conventional approach. The proposed approach is expected to have wide applications to general problems such as samples that are driven by multiple events and that do not have the identical distribution.

Estimation of Design Rainfall Considering the Change of the Number of Years for Observed Data (관측년수변화를 고려한 설계강우량 산정)

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk;Hwang, Man-Ha;Lee, Sang-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.284-287
    • /
    • 2005
  • The objective of this study is to check into variation trends of design rainfall according to change of the number of years for observed data. To make comparative study of the relation between design rainfall and recorded year, this study was used maximum rainfall for 24-hr consecutive duration at Gangneung, Seoul, Incheon, Chupungnyeong, Pohang, Daegu, Jeonju, Ulsan, Gwangju, Busan, Mokpo and Yeosu rainfall stations. The tests for Independence, Homogeneity and detection of outliers were used Wald-Wolfowitz's test, Mann-Whitney's test and Grubbs and Beck test respectively. To select appopriate distribution, the distribution of genaralized pareto(GPA), generalized extreme value(GEV), generalized logistic(GLO), lognormal and pearson type 3 distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. Design rainfall was estimated by at-site frequency analysis using L-moments and Generalized extreme value(GEV) distribution according to change of the number of years for observed data. Through the comparative analysis for design rainfall induced by L-moments and GEV distribution, relationship between design rainfall and recorded year is provided.

  • PDF

Time-varying modeling of the composite LN-GPD (시간에 따라 변화하는 로그-정규분포와 파레토 합성 분포의 모형 추정)

  • Park, Sojin;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • The composite lognormal-generalized Pareto distribution (LN-GPD) is a mixture of right-truncated lognormal and GPD for a given threshold value. Scollnik (Scandinavian Actuarial Journal, 2007, 20-33, 2007) shows that the composite LN-GPD is adequate to describe body distribution and heavy-tailedness. This paper considers time-varying modeling of the LN-GPD based on local polynomial maximum likelihood estimation. Time-varying model provides significant detailed information of time dependent data, hence it can be applied to disciplines such as service engineering for staffing and resources management. Our work also extends to Beirlant and Goegebeur (Journal of Multivariate Analysis, 89, 97-118, 2004) in the sense of losing no data by including truncated lognormal distribution. Our proposed method is shown to perform adequately in simulation. Real data application to the service time of the Israel bank call center shows interesting findings on the staffing policy.

Analysis on Characteristics of Variation in Flood Flow by Changing Order of Probability Weighted Moments (확률가중모멘트의 차수 변화에 따른 홍수량 변동 특성 분석)

  • Maeng, Seung-Jin;Hwang, Ju-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1009-1019
    • /
    • 2009
  • In this research, various characteristics of South Korea's design flood have been examined by deriving appropriate design flood, using data obtained from careful observation of actual floods occurring in selected main watersheds of the nation. 19 watersheds were selected for research in Korea. The various characteristics of annual rainfall were analyzed by using a moving average method. The frequency analysis was decided to be performed on the annual maximum flood of succeeding one year as a reference year. For the 19 watersheds, tests of basic statistics, independent, homogeneity, and outlier were calculated per period of annual maximum flood series. By performing a test using the LH-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, among applied distributions of Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distribution was found to be adequate compared with other probability distributions. Parameters of GEV distribution were estimated by L, L1, L2, L3 and L4-moment method based on the change in the order of probability weighted moments. Design floods per watershed and the periods of annual maximum flood series were derived by GEV distribution. According to the result of the analysis performed by using variation rate used in this research, it has been concluded that the time for changing the design conditions to ensure the proper hydraulic structure that considers recent climate changes of the nation brought about by global warming should be around the year 2002.

Threshold Estimation of Generalized Pareto Distribution Based on Akaike Information Criterion for Accurate Reliability Analysis (정확한 신뢰성 해석을 위한 아카이케 정보척도 기반 일반화파레토 분포의 임계점 추정)

  • Kang, Seunghoon;Lim, Woochul;Cho, Su-Gil;Park, Sanghyun;Lee, Minuk;Choi, Jong-Su;Hong, Sup;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.163-168
    • /
    • 2015
  • In order to perform estimations with high reliability, it is necessary to deal with the tail part of the cumulative distribution function (CDF) in greater detail compared to an overall CDF. The use of a generalized Pareto distribution (GPD) to model the tail part of a CDF is receiving more research attention with the goal of performing estimations with high reliability. Current studies on GPDs focus on ways to determine the appropriate number of sample points and their parameters. However, even if a proper estimation is made, it can be inaccurate as a result of an incorrect threshold value. Therefore, in this paper, a GPD based on the Akaike information criterion (AIC) is proposed to improve the accuracy of the tail model. The proposed method determines an accurate threshold value using the AIC with the overall samples before estimating the GPD over the threshold. To validate the accuracy of the method, its reliability is compared with that obtained using a general GPD model with an empirical CDF.

Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions (균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘)

  • Jang Su-Hyun;Yoon Byungjoo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.841-848
    • /
    • 2004
  • Evolutionary a1gorithms are well-suited for multi-objective optimization problems involving several, often conflicting objectives. Pareto-based evolutionary algorithms, in particular, have shown better performance than other multi-objective evolutionary algorithms in comparison. However, generalized evolutionary multi-objective optimization algorithms have a weak point, in which the distribution of solutions are not uni-formly distributed onto Pareto optimal front. In this paper, we propose an evolutionary a1gorithm for multi-objective optimization which uses seed individuals in order to overcome weakness of algorithms Published. Seed individual means a solution which is not located in the crowded region on Pareto front. And the idea of our algorithm uses seed individuals for reproducing individuals for next generation. Thus, proposed a1go-rithm takes advantage of local searching effect because new individuals are produced near the seed individual with high probability, and is able to produce comparatively uniform distributed pareto optimal solutions. Simulation results on five testbed problems show that the proposed algo-rithm could produce uniform distributed solutions onto pareto optimal front, and is able to show better convergence compared to NSGA-II on all testbed problems except multi-modal problem.

Estimation of Reservoir Inflow Using Frequency Analysis (빈도분석에 의한 저수지 유입량 산정)

  • Maeng, Seung-Jin;Hwang, Ju-Ha;Shi, Qiang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.53-62
    • /
    • 2009
  • This study was carried out to select optimal probability distribution based on design accumulated monthly mean inflow from the viewpoint of drought by Gamma (GAM), Generalized extreme value (GEV), Generalized logistic (GLO), Generalized normal (GNO), Generalized pareto (GPA), Gumbel (GUM), Normal (NOR), Pearson type 3 (PT3), Wakeby (WAK) and Kappa (KAP) distributions for the observed accumulative monthly mean inflow of Chungjudam. L-moment ratio was calculated using observed accumulative monthly mean inflow. Parameters of 10 probability distributions were estimated by the method of L-moments with the observed accumulated monthly mean inflow. Design accumulated monthly mean inflows obtained by the method of L-moments using different methods for plotting positions formulas in the 10 probability distributions were compared by relative mean error (RME) and relative absolute error (RAE) respectively. It has shown that the design accumulative monthly mean inflow derived by the method of L-moments using Weibull plotting position formula in WAK and KAP distributions were much closer to those of the observed accumulative monthly mean inflow in comparison with those obtained by the method of L-moment with the different formulas for plotting positions in other distributions from the viewpoint of RME and RAE.

Geographical Impact on the Annual Maximum Rainfall in Korean Peninsula and Determination of the Optimal Probability Density Function (우리나라 연최대강우량의 지형학적 특성 및 이에 근거한 최적확률밀도함수의 산정)

  • Nam, Yoon Su;Kim, Dongkyun
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.251-263
    • /
    • 2015
  • This study suggested a novel approach of estimating the optimal probability density function (OPDF) of the annual maximum rainfall time series (AMRT) combining the L-moment ratio diagram and the geographical information system. This study also reported several interesting geographical characteristics of the AMRT in Korea. To achieve this purpose, this study determined the OPDF of the AMRT with the duration of 1-, 3-, 6-, 12-, and 24-hours using the method of L-moment ratio diagram for each of the 67 rain gages in Korea. Then, a map with the Thiessen polygons of the 67 rain gages colored differently according the different type of the OPDF, was produced to analyze the spatial trend of the OPDF. In addition, this study produced the color maps which show the fitness of a given probability density function to represent the AMRT. The study found that (1) both L-skewness and L-kurtosis of the AMRT have clear geographical trends, which means that the extreme rainfall events are highly influenced by geography; (2) the impact of the altitude on these two rainfall statistics is greater for the mountaneous region than for the non-mountaneous region. In the mountaneous region, the areas with higher altitude are more likely to experience the less-frequent and strong rainfall events than the areas with lower altitude; (3) The most representative OPDFs of Korea except for the Southern edge are Generalized Extreme Value distribution and the Generalized Logistic distribution. The AMRT of southern edge of Korea was best represented by the Generalized Pareto distribution.

Frequency Analysis of Extreme Rainfall by L-Moments (L-모멘트법에 의한 극치강우의 빈도분석)

  • Maeng, Sung-Jin;Lee, Soon-Hyuk;Kim, Byung-Jun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.225-228
    • /
    • 2002
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall in 38 Korean rainfall stations. To select the fit appropriate distribution of annual maximum daily rainfall data according to rainfall stations, applied were Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) probability distributions were applied. and their aptness was judged Dusing an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, the aptitude was judged of applied distributions such as GEV, GLO and GPA. The GEV and GLO distributions were selected as the appropriate distributions. Their parameters were estimated Targetingfrom the observed and simulated annual maximum daily rainfalls and using Monte Carlo techniques, the parameters of GEV and GLO selected as suitable distributions were estimated and. dDesign rainfallss were then derived, using the L-moment. Appropriate design rainfalls were suggested by doing a comparative analysis of design rainfall from the GEV and GLO distributions according to rainfall stations.

  • PDF

Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution (GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화)

  • Kim, Hyundon;Kim, Hyun Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1479-1494
    • /
    • 2015
  • Since the Markowitz's mean-variance framework for portfolio analysis, the topic of portfolio optimization has been an important topic in finance. Traditional approaches focus on maximizing the expected return of the portfolio while minimizing its variance, assuming that risky asset returns are normally distributed. The normality assumption however has widely been criticized as actual stock price distributions exhibit much heavier tails as well as asymmetry. To this extent, in this paper we employ the genetic algorithm to find the optimal portfolio under the Value-at-Risk (VaR) constraint, where the tail of risky assets are modeled with the generalized Pareto distribution (GPD), the standard distribution for exceedances in extreme value theory. An empirical study using Korean stock prices shows that the performance of the proposed method is efficient and better than alternative methods.