• Title/Summary/Keyword: Generalized Pareto 분포

Search Result 35, Processing Time 0.022 seconds

The Determination of Probability Distributions of Annual, Seasonal and Monthly Precipitation in Korea (우리나라의 연 강수량, 계절 강수량 및 월 강수량의 확률분포형 결정)

  • Kim, Dong-Yeob;Lee, Sang-Ho;Hong, Young-Joo;Lee, Eun-Jai;Im, Sang-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.83-94
    • /
    • 2010
  • The objective of this study was to determine the best probability distributions of annual, seasonal and monthly precipitation in Korea. Data observed at 32 stations in Korea were analyzed using the L-moment ratio diagram and the average weighted distance (AWD) to identify the best probability distributions of each precipitation. The probability distribution was best represented by 3-parameter Weibull distribution (W3) for the annual precipitation, 3-parameter lognormal distribution (LN3) for spring and autumn seasons, and generalized extreme value distribution (GEV) for summer and winter seasons. The best probability distribution models for monthly precipitation were LN3 for January, W3 for February and July, 2-parameter Weibull distribution (W2) for March, generalized Pareto distribution (GPA) for April, September, October and November, GEV for May and June, and log-Pearson type III (LP3) for August and December. However, from the goodness-of-fit test for the best probability distributions of the best fit, GPA for April, September, October and November, and LN3 for January showed considerably high reject rates due to computational errors in estimation of the probability distribution parameters and relatively higher AWD values. Meanwhile, analyses using data from 55 stations including additional 23 stations indicated insignificant differences to those using original data. Further studies using more long-term data are needed to identify more optimal probability distributions for each precipitation.

Estimation of storm events frequency analysis using copula function (Copula 함수를 이용한 호우사상의 빈도해석 산정)

  • An, Heejin;Lee, Moonyoung;Kim, Si Yeon;Jeon, Seol;Ahn, Youngmin;Jung, Donghwa;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.200-200
    • /
    • 2022
  • 본 연구에서는 총 강우량과 강우강도을 고려한 이변수 분석으로 연최대 호우사상을 선별하고, 두 변수를 Copula 함수로 결합하여 최적의 모델조합을 찾는 확률호우사상 산정 방법론을 제시하였다. 국내 69개 관측소의 2020년까지의 관측 자료를 대상으로 1mm 이하의 강우는 제거한 뒤, IETD(Inter-Event Time Definition) 12시간을 기준으로 강우자료를 독립적인 호우사상으로 분리하였다. 호우사상의 여러 특성 중 양의 상관관계를 갖는 총 강우량과 강우강도를 변수로 선택해 이변수 지수분포에 대입하였고, 각 지점의 연최대 호우사상 시계열을 생성하였다. 2변수 지수분포의 매개변수는 전체 기간과 연도별로 나누어 추정해 본 결과 연도별 변동성이 큰 것을 확인해 연도별 추정 방식을 선택하였다. 연최대 강우사상 시계열의 총 강우량과 강우강도는 극한 강우에 적용하는 확률분포형 중 Lognarmal, Gamma, Gumbel, GEV(Generalized Extreme Value), GPD(Generalized Pareto Distribution) 5가지를 사용하여 각각 CDF(Cumulative distribution Function) 값을 추정하였다. 계산된 CDF 값은 3가지 Copula 모형으로 결합해 joint CDF 값을 산출하였다. 총 75개의 모델조합 중 최적 모델을 찾기 위해 CVM(Cramer-von-Mises) 적합도 검정을 시행하였다. CVM의 통계량 Sn 값이 가장 작은 모델조합을 해당 지점의 최적 모델조합으로 선정하였다.

  • PDF

Extreme Sea Level Analysis in Coastal Waters around Korean Peninsula Using Empirical Simulation Technique (경험모의기법을 이용한 한반도 주변 해역에서의 극치해면 분석)

  • Suh, Kyung-Duck;Yang, Young-Chul;Jun, Ki-Chun;Lee, Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.254-265
    • /
    • 2009
  • The estimation of the extreme sea level is necessary in the design of offshore or coastal structures. In this paper, the storm surge data calculated numerically at 52 harbors around the Korean Peninsula are analyzed by using annual maximum series(AMS), peaks over threshold(POT) and empirical simulation technique(EST). The maximum likelihood method was used to estimate the parameters in both AMS and POT models. The Generalized Pareto distribution was used and Chi-square and Kolmogorov-Smirnov goodness-of-fit tests were performed with the acceptable significance level 5%. The extreme sea levels were also evaluated by EST including tide effect, showing similar results as given by Jeong et al.(2008).

Statistical frequency analysis of snow depth using mixed distributions (혼합분포함수를 적용한 최심신적설량에 대한 수문통계학적 빈도분석)

  • Park, Kyung Woon;Kim, Dongwook;Shin, Ji Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1001-1009
    • /
    • 2019
  • Due to recent increasing heavy snow in Korea, the damage caused by heavy snow is also increasing. In Korea, there are many efforts including establishing disaster prevention measures to reduce the damage throughout the country, but it is difficult to establish the design criteria due to the characteristics of heavy snow. In this study, snowfall frequency analysis was performed to estimate design snow depths using observed snow depth data at Jinju, Changwon and Hapcheon stations. The conventional frequency analysis is sometime limted to apply to the snow depth data containing zero values which produce unrealistc estimates of distributon parameters. To overcome this problem, this study employed mixed distributions based on Lognormal, Generalized Pareto (GP), Generalized Extreme Value (GEV), Gamma, Gumbel and Weibull distribution. The results show that the mixed distributions produced smaller design snow depths than single distributions, which indicated that the mixed distributions are applicable and practical to estimate design snow depths.

Estimation of Drought Rainfall According to Consecutive Duration and Return Period Using Probability Distribution (확률분포에 의한 지속기간 및 빈도별 가뭄우량 추정)

  • Lee, Soon Hyuk;Maeng, Sung Jin;Ryoo, Kyong Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1103-1106
    • /
    • 2004
  • The objective of this study is to induce the design drought rainfall by the methodology of L-moment including testing homogeneity, independence and outlier of the data of annual minimum monthly rainfall in 57 rainfall stations in Korea in terms of consecutive duration for 1, 2, 4, 6, 9 and 12 months. To select appropriate distribution of the data for annual minimum monthy rainfall by rainfall station, the distribution of generalized extreme value (GEV), generalized logistic (GLO) as well as that of generalized pareto (GPA) are applied and the appropriateness of the applied GEV, GLO, and GPA distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. As for the annual minimum monthly rainfall measured by rainfall station and that stimulated by Monte Carlo techniques, the parameters of the appropriately selected GEV and GPA distributions are calculated by the methodology of L-moment and the design drought rainfall is induced. Through the comparative analysis of design drought rainfall induced by GEV and GPA distribution by rainfall station, the optimal design drought rainfall by rainfall station is provided.

  • PDF

Value at Risk with Peaks over Threshold: Comparison Study of Parameter Estimation (Peacks over threshold를 이용한 Value at Risk: 모수추정 방법론의 비교)

  • Kang, Minjung;Kim, Jiyeon;Song, Jongwoo;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.483-494
    • /
    • 2013
  • The importance of financial risk management has been highlighted after several recent incidences of global financial crisis. One of the issues in financial risk management is how to measure the risk; currently, the most widely used risk measure is the Value at Risk(VaR). We can consider to estimate VaR using extreme value theory if the financial data have heavy tails as the recent market trend. In this paper, we study estimations of VaR using Peaks over Threshold(POT), which is a common method of modeling fat-tailed data using extreme value theory. To use POT, we first estimate parameters of the Generalized Pareto Distribution(GPD). Here, we compare three different methods of estimating parameters of GPD by comparing the performance of the estimated VaR based on KOSPI 5 minute-data. In addition, we simulate data from normal inverse Gaussian distributions and examine two parameter estimation methods of GPD. We find that the recent methods of parameter estimation of GPD work better than the maximum likelihood estimation when the kurtosis of the return distribution of KOSPI is very high and the simulation experiment shows similar results.

Confidence Intervals for High Quantiles of Heavy-Tailed Distributions (꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간)

  • Kim, Ji-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.461-473
    • /
    • 2014
  • We consider condence intervals for high quantiles of heavy-tailed distribution. The asymptotic condence intervals based on the limiting distribution of estimators are considered together with bootstrap condence intervals. We can also apply a non-parametric, parametric and semi-parametric approach to each of these two kinds of condence intervals. We considered 11 condence intervals and compared their performance in actual coverage probability and the length of condence intervals. Simulation study shows that two condence intervals (the semi-parametric asymptotic condence interval and the semi-parametric bootstrap condence interval using pivotal quantity) are relatively more stable under the criterion of actual coverage probability.

Analysis of Extreme Values of Daily Percentage Increases and Decreases in Crude Oil Spot Prices (국제현물원유가의 일일 상승 및 하락율의 극단값 분석)

  • Yun, Seok-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.835-844
    • /
    • 2010
  • Tools for statistical analysis of extreme values include the classical annual maximum method, the modern threshold method and variants improving the second one. While the annual maximum method is to t th generalized extreme value distribution to the annual maxima of a time series, the threshold method is to the generalized Pareto distribution to the excesses over a high threshold from the series. In this paper we deal with the Poisson-GPD method, a variant of the threshold method with a further assumption that the total number of exceedances follows the Poisson distribution, and apply it to the daily percentage increases and decreases computed from the spot prices of West Texas Intermediate, which were collected from January 4th, 1988 until December 31st, 2009. According to this analysis, the distribution of daily percentage increases as well as decreases turns out to have a heavy tail, unlike the normal distribution, which coincides well with the general phenomenon appearing in the analysis of lots of nowaday nancial data.

Estimating design floods for ungauged basins in the geum-river basin through regional flood frequency analysis using L-moments method (L-모멘트법을 이용한 지역홍수빈도분석을 통한 금강유역 미계측 유역의 설계홍수량 산정)

  • Lee, Jin-Young;Park, Dong-Hyeok;Shin, Ji-Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.645-656
    • /
    • 2016
  • The study performed a regional flood frequency analysis and proposed a regression equation to estimate design floods corresponding to return periods for ungauged basins in Geum-river basin. Five preliminary tests were employed to investigate hydrological independence and homogeneity of streamflow data, i.e. the lag-one autocorrelation test, time homogeneity test, Grubbs-Beck outlier test, discordancy measure test ($D_i$), and regional homogeneity measure (H). The test results showed that streamflow data were time-independent, discordant and homogeneous within the basin. Using five probability distributions (generalized extreme value (GEV), three-parameter log-normal (LN-III), Pearson type 3 (P-III), generalized logistic (GLO), generalized Pareto (GPA)), comparative regional flood frequency analyses were carried out for the region. Based on the L-moment ratio diagram, average weighted distance (AWD) and goodness-of-fit statistics ($Z^{DIST}$), the GLO distribution was selected as the best fit model for Geum-river basin. Using the GLO, a regression equation was developed for estimating regional design floods, and validated by comparing the estimated and observed streamflows at the Ganggyeong station.

Estimation of VaR and Expected Shortfall for Stock Returns (주식수익률의 VaR와 ES 추정: GARCH 모형과 GPD를 이용한 방법을 중심으로)

  • Kim, Ji-Hyun;Park, Hwa-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.651-668
    • /
    • 2010
  • Various estimators of two risk measures of a specific financial portfolio, Value-at-Risk and Expected Shortfall, are compared for each case of 1-day and 10-day horizons. We use the Korea Composite Stock Price Index data of 20-year period including the year 2008 of the global financial crisis. Indexes of five foreign stock markets are also used for the empirical comparison study. The estimator considering both the heavy tail of loss distribution and the conditional heteroscedasticity of time series is of main concern, while other standard and new estimators are considered too. We investigate which estimator is best for the Korean stock market and which one shows the best overall performance.