• Title/Summary/Keyword: Generalized Net

Search Result 87, Processing Time 0.03 seconds

An experimental study on the application of escape device in a net pot for protecting of small giant octopus (Octopus dofleini) (어린 대문어(Octopus dofleini) 보호를 위한 통발의 탈출장치 적용에 대한 실험적 고찰)

  • KIM, Seonghun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.193-198
    • /
    • 2022
  • In this study, for the purpose of reducing the catch of small giant octopus in a net pot, an escape experiment of octopus was performed on five types of escape rings of different sizes. As a result of the experiment, the smallest giant octopus with a weight of 406 g was found to escape from an escape ring with a diameter of 30 mm or larger, and 592 g octopus, a weight similar to the octopus of the current minimum landing weight (600 g), escaped from an escape ring with a diameter of larger than 40 mm. An individual weight with 406 g becomes 39 mm when converted from a diameter of 25 mm circular escape vent; that is, the circumference to the inner diameter of the mesh. It can be inferred that the converted mesh size of 39 mm cannot escape. Logistic regression analysis was performed using a generalized linear model (GLM) to investigate the correlation between the ratio of escape ring size/Mantle diameter (R/MD) and the escape rate. As a result, it was found that there was a significant correlation between the R/MD ratio and the escape rate and that the higher the R/MD ratio, the greater the escape rate. As a result of logistic regression analysis, the R/MD value was denoted 0.520 with the 50% escape rate. In addition, it can be estimated to be about 50 mm when converted to the mesh size. Therefore, in this study, the diameter of the escape ring and the size of the escape possible of the octopus were experimentally considered. It was found that there was a significant correlation.

Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images (Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시)

  • Sihyun Lee;Yoojin Kang;Taejun Sung;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.979-995
    • /
    • 2023
  • As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.

Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia (동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가)

  • Chun, Jong Ahn;Lee, Eunjeong;Kim, Daeha;Kim, Seon Tae;Lee, Woo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.409-416
    • /
    • 2020
  • An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially monitoring extreme drought events. The Yangtze basin was selected to evaluate the Noah LSM performance for the East Asia region (15-60°N, 70-150°E) and the evapotranspiration (ET) and sensible heat flux (SH) were compared with ET and SH from FluxNet and with ET from FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, and Generalized Complementary Relationship (GCR). For the ET, the coefficients of determination (R2) were higher than 0.96, while the R2 value for the SH was 0.71 with slightly lower than those. A time series of the weekly root-zone SMI revealed that the regions with Extreme drought had been expanded from the northern part of East China to the entire East China between July to October 2019. The trend analysis of the number of extreme drought events showed that extreme drought events in spring had reduced in South Korea over the past 20 years, while those in fall had a tendency to increase. It is concluded that this study can be useful to reduce the socioeconomic damages resulted from climate extremes by comprehensively characterizing extreme drought events.

DEVELOPMENT OF A VULNERABILITY ASSESSMENT CODE FOR A PHYSICAL PROTECTION SYSTEM: SYSTEMATIC ANALYSIS OF PHYSICAL PROTECTION EFFECTIVENESS (SAPE)

  • Jang, Sung-Soon;Kwan, Sung-Woo;Yoo, Ho-Sik;Kim, Jung-Soo;Yoon, Wan-Ki
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.747-752
    • /
    • 2009
  • A vulnerability assessment is essential for the efficient operation of a physical protection system (PPS). Previous assessment codes have used a simple model called an adversary sequence diagram. In this study, the use of a two-dimensional (2D) map of a facility as a model for a PPS is suggested as an alternative approach. The analysis of a 2D model, however, consumes a lot of time. Accordingly, a generalized heuristic algorithm has been applied to address this issue. The proposed assessment method was implemented to a computer code; Systematic Analysis of physical Protection Effectiveness (SAPE). This code was applied to a variety of facilities and evaluated for feasibility by applying it to various facilities. To help upgrade a PPS, a sensitivity analysis of all protection elements along a chosen path is proposed. SAPE will help to accurately and intuitively assess a PPS.

Integrated Navigation of the Mobile Service Robot in Office Environments

  • Chung, Woo-Jin;Kim, Gun-Hee;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2033-2038
    • /
    • 2003
  • This paper describes an integrated navigation strategy for the autonomous service robot PSR. The PSR is under development at the KIST for service tasks in indoor public environments. The PSR is a multi-functional mobile-manipulator typed agent, which works in daily life. Major advantages of proposed navigation are as follows: 1) Structured control architecture for a systematic integration of various software modules. A Petri net based configuration design enables stable control flow of a robot. 2) A range sensor based generalized scheme of navigation. Any range sensor can be selectively applied using the proposed navigation scheme. 3) No need for modification of environments. (No use of artificial landmarks.) 4) Hybrid approaches combining reactive behavior as well as deliberative planner, and local grid maps as well as global topological maps. A presented experimental result shows that the proposed navigation scheme is useful for mobile service robot in practical applications.

  • PDF

A Study on the Intelligent Man-Machine Interface System: The Experiments of the Recognition of Korean Monotongs and Cognitive Phenomena of Korean Speech Recognition Using Artificial Neural Net Models (통합 사용자 인터페이스에 관한 연구 : 인공 신경망 모델을 이용한 한국어 단모음 인식 및 음성 인지 실험)

  • Lee, Bong-Ku;Kim, In-Bum;Kim, Ki-Seok;Hwang, Hee-Yeung
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.101-106
    • /
    • 1989
  • 음성 및 문자를 통한 컴퓨터와의 정보 교환을 위한 통합 사용자 인터페이스 (Intelligent Man- Machine interface) 시스템의 일환으로 한국어 단모음의 인식을 위한 시스템을 인공 신경망 모델을 사용하여 구현하였으며 인식시스템의 상위 접속부에 필요한 단어 인식 모듈에 있어서의 인지 실험도 행하였다. 모음인식의 입력으로는 제1, 제2, 제3 포르만트가 사용되었으며 실험대상은 한국어의 [아, 어, 오, 우, 으, 이, 애, 에]의 8 개의 단모음으로 하였다. 사용한 인공 신경망 모델은 Multilayer Perceptron 이며, 학습 규칙은 Generalized Delta Rule 이다. 1 인의 남성 화자에 대하여 약 94%의 인식율을 나타내었다. 그리고 음성 인식시의 인지 현상 실험을 위하여 약 20개의 단어를 인공신경망의 어휘레벨에 저장하여 음성의 왜곡, 인지시의 lexical 영향, categorical percetion등을 실험하였다. 이때의 인공 신경망 모델은 Interactive Activation and Competition Model을 사용하였으며, 음성 입력으로는 가상의 음성 피쳐 데이타를 사용하였다.

  • PDF

Initial requirements to the optimal performance of systems modeled by timed place Petri nets using the synchronic time ratio (Synchronic time ratio를 이용 시간 페트리 네트로 모델링된 시스템의 최적 성능에 필요한 초기 조건 결정)

  • Go, In-Seon;Choi, Juang-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.101-108
    • /
    • 1997
  • The initial token value required to the optimal performance of discrete event systems can be decided by Sum of Delay Time and Synchronic Time ratio, which are new synchronic variables in Timed Place Petri Nets. For the system consisting of two Live-and-Bounded circuits(LB-circuits) fused in common Transition-Transition-Path or common Place-Place-Path, we prove that the Synchronic Time Ratio is the initial token ratio between two LB-circuits to optimally perform system functions. These results are generalized and formulated as a theorem. The initial tokens of a specific place can imply shared resources. Using the theorem, we can decide the minimum number of the shared resources to obtain the optimal performance, and minimize the idling time of resources. As an example, an automated assembly system is modeled by Timed Place Petri Net, and the initial tokens to achieve the optimal system performance are identified. All the values are verified by simulation.

  • PDF

Reactor core analysis through the SP3-ACMFD approach. Part I: Static solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.223-229
    • /
    • 2020
  • The present work proposes a solution to the static Boltzmann transport equation approximated by the simplified P3 (SP3) on angular, and the analytic coarse mesh finite difference (ACMFD) for spatial variables. Multi-group SP3-ACMFD equations in 3D rectangular geometry are solved using the GMRES solution technique. As the core time dependent analysis necessitates the solution of an eigenvalue problem for an initial condition, this work is hence devoted to development and verification of the proposed static SP3-ACMFD solver. A 3D multi-group static diffusion solver is also developed as a byproduct of this work to assess the improvement achieved using the SP3 technique. Static results are then compared against transport benchmarks to assess the proximity of SP3-ACMFD solutions to their full transport peers. Results prove that the approach can be considered as an acceptable interim approximation with outputs superior to the diffusion method, close to the transport results, and with the computational costs less than the full transport approach. The work would be further generalized to time dependent solutions in Part II.

A Risk-Return Analysis of Loan Portfolio Diversification in the Vietnamese Banking System

  • HUYNH, Japan;DANG, Van Dan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.105-115
    • /
    • 2020
  • The study empirically examines the effects of loan portfolio diversification on bank risk and return in the nascent banking market of Vietnam. Loan portfolio diversification is captured through the Hirschman-Herfindahl index and the Shannon Entropy with sectoral exposures. We access each bank's financial reports to collect the required data, especially the breakdown of sectoral loan portfolios, thus constituting a unique dataset. To compute bank return, we use the traditional accounting indicators, including return-on-assets, return-on-equity, and net-interest margin. For bank risk, we utilize the loan-loss provisions and non-performing loans relative to gross customer loans. Using a sample of 30 commercial banks over the period from 2008 to 2019 and the system generalized method of moments estimator for the dynamic panel, we indicate the downsides of portfolio diversification. Concretely, we observe that all diversification measures exhibit significantly negative signs in all regressions across different bank return proxies. At the same time, the estimates display the significant and positive impact of diversification on the non-performing loan ratio. Hence, sectoral loan portfolio diversification significantly hampers bank performance in both aspects of lower return and higher credit risk. The results are robust across a rich set of bank performance and portfolio diversification measures.

Factors Affecting Financial Risk: Evidence from Listed Enterprises in Vietnam

  • DANG, Hang Thu;PHAN, Duong Thuy;NGUYEN, Ha Thi;HOANG, Le Hong Thi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.11-18
    • /
    • 2020
  • This paper analyzes factors affecting enterprise's financial risk listed on the Vietnam stock market. The panel data of research sample includes 524 non-financial listed enterprises on the Vietnam stock market for a period of eleven years, from 2009 to 2019. The Generalized Least Square (GLS) is employed to address econometric issues and to improve the accuracy of the regression coefficients. In this research, financial risk is measured by the Alexander Bathory model. Debt structure, Solvency, Profitability, Operational ability, Capital structure are independent variables in the study. Firm Size, firm age, growth rate are control variables. The model results show that in order to prevent and limit financial risk for enterprises listed on the Vietnam Stock Market, attention should be paid to variables reflecting Liability structure ratio, Quick Ratio, Return on Assets, Total asset turnover, Accounts receivable turnover, Net assets ratio and Fixed assets ratio. The empirical results show that there are differences in the impact of these factors on the financial risk in state-owned enterprises and non-state enterprises listed on the Vietnam stock market. The findings of this article are useful for business administrators, helping business managers make the right financial decisions to improve the efficiency of financial risk management in enterprises.