• Title/Summary/Keyword: Generalized Linear Model

Search Result 455, Processing Time 0.02 seconds

Large Robust Designs for Generalized Linear Model

  • Kim, Young-Il;Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.289-298
    • /
    • 1999
  • We consider a minimax approach to make a design robust to many types or uncertainty arising in reality when dealing with non-normal linear models. We try to build a design to protect against the worst case, i.e. to improve the "efficiency" of the worst situation that can happen. In this paper, we especially deal with the generalized linear model. It is a known fact that the generalized linear model is a universal approach, an extension of the normal linear regression model to cover other distributions. Therefore, the optimal design for the generalized linear model has very similar properties as the normal linear model except that it has some special characteristics. Uncertainties regarding the unknown parameters, link function, and the model structure are discussed. We show that the suggested approach is proven to be highly efficient and useful in practice. In the meantime, a computer algorithm is discussed and a conclusion follows.

  • PDF

Sire Evaluation of Count Traits with a Poisson-Gamma Hierarchical Generalized Linear Model

  • Lee, C.;Lee, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.642-647
    • /
    • 1998
  • A Poisson error model as a generalized linear mixed model (GLMM) has been suggested for genetic analysis of counted observations. One of the assumptions in this model is the normality for random effects. Since this assumption is not always appropriate, a more flexible model is needed. For count traits, a Poisson hierarchical generalized linear model (HGLM) that does not require the normality for random effects was proposed. In this paper, a Poisson-Gamma HGLM was examined along with corresponding analytical methods. While a difficulty arises with Poisson GLMM in making inferences to the expected values of observations, it can be avoided with the Poisson-Gamma HGLM. A numerical example with simulated embryo yield data is presented.

Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes (공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관)

  • Park, Jincheol
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.353-360
    • /
    • 2015
  • Various statistical models have been proposed over the last decade for spatially correlated Gaussian outcomes. The spatial linear mixed model (SLMM), which incorporates a spatial effect as a random component to the linear model, is the one of the most widely used approaches in various application contexts. Employing link functions, SLMM can be naturally extended to spatial generalized linear mixed model for non-Gaussian outcomes (SGLMM). We review popular SGLMMs on non-Gaussian spatial outcomes and demonstrate their applications with available public data.

A Score Test for Detection of Outliers in Generalized Linear Models

  • Kahng, Myung-Wook;Kim, Min-Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.129-139
    • /
    • 2004
  • We consider the problem of testing for outliers in generalized linear model. We proceed by first specifying a mean shift outlier model, assuming the suspect set of ourliers is known. Given this model, we discuss standard approaches to obtaining score test for outliers as an alternative to the likelihood ratio test.

  • PDF

A Study for Recent Development of Generalized Linear Mixed Model (일반화된 선형 혼합 모형(GENERALIZED LINEAR MIXED MODEL: GLMM)에 관한 최근의 연구 동향)

  • 이준영
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.541-562
    • /
    • 2000
  • The generalized linear mixed model framework is for handling count-type categorical data as well as for clustered or overdispersed non-Gaussian data, or for non-linear model data. In this study, we review its general formulation and estimation methods, based on quasi-likelihood and Monte-Carlo techniques. The current research areas and topics for further development are also mentioned.

  • PDF

Predictive analysis in insurance: An application of generalized linear mixed models

  • Rosy Oh;Nayoung Woo;Jae Keun Yoo;Jae Youn Ahn
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.437-451
    • /
    • 2023
  • Generalized linear models and generalized linear mixed models (GLMMs) are fundamental tools for predictive analyses. In insurance, GLMMs are particularly important, because they provide not only a tool for prediction but also a theoretical justification for setting premiums. Although thousands of resources are available for introducing GLMMs as a classical and fundamental tool in statistical analysis, few resources seem to be available for the insurance industry. This study targets insurance professionals already familiar with basic actuarial mathematics and explains GLMMs and their linkage with classical actuarial pricing tools, such as the Buhlmann premium method. Focus of the study is mainly on the modeling aspect of GLMMs and their application to pricing, while avoiding technical issues related to statistical estimation, which can be automatically handled by most statistical software.

Exploring Interaction in Generalized Linear Models

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • We explore the structure and usefulness of the 3-D residual plot as a basic tool for dealing with interaction in generalized linear models. If predictors have an interaction effect, the shape obtained by rotating the 3-D residual plot will show its presence. To illustrate the use of this plot as an aid to exploring the interaction, we present an example of a binomial regression model using simulated data.

  • PDF

A Balanced Model Reduction for Linear Delayed Systems (시간지연시스템의 균형화된 모델차수 축소)

  • 유석환
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.326-332
    • /
    • 2003
  • This paper deals with a model reduction for linear systems with time varying delayed states. A generalized controllability and observability gramians are defined and obtained by solving linear matrix inequalities. Using the generalized controllability and observability gramians, the balanced state space equation is realized. The reduced model can be obtained by truncating states in the balanced realization and the upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is performed.

Testing Independence in Contingency Tables with Clustered Data (집락자료의 분할표에서 독립성검정)

  • 정광모;이현영
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.337-346
    • /
    • 2004
  • The Pearson chi-square goodness-of-fit test and the likelihood ratio tests are usually used for testing independence in two-way contingency tables under random sampling. But both of these tests may provide false results for the contingency table with clustered observations. In this case we consider the generalized linear mixed model which includes random effects of clustering in addition to the fixed effects of covariates. Both the heterogeneity between clusters and the dependency within a cluster can be explained via generalized linear mixed model. In this paper we introduce several types of generalized linear mixed model for testing independence in contingency tables with clustered observations. We also discuss the fitting of these models through a real dataset.

Generalized Partially Double-Index Model: Bootstrapping and Distinguishing Values

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.305-312
    • /
    • 2015
  • We extend a generalized partially linear single-index model and newly define a generalized partially double-index model (GPDIM). The philosophy of sufficient dimension reduction is adopted in GPDIM to estimate unknown coefficient vectors in the model. Subsequently, various combinations of popular sufficient dimension reduction methods are constructed with the best combination among many candidates determined through a bootstrapping procedure that measures distances between subspaces. Distinguishing values are newly defined to match the estimates to the corresponding population coefficient vectors. One of the strengths of the proposed model is that it can investigate the appropriateness of GPDIM over a single-index model. Various numerical studies confirm the proposed approach, and real data application are presented for illustration purposes.