• Title/Summary/Keyword: Generalized Frequency Division Multiplexing(GFDM)

Search Result 3, Processing Time 0.02 seconds

PAPR Reduction Scheme Using Selective Mapping in GFDM (선택사상기법을 이용한 GFDM의 최대전력 대 평균전력 비 감소기법)

  • Oh, Hyunmyung;Yang, Hyun Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.698-706
    • /
    • 2016
  • Orthogonal frequency division multiplexing (OFDM) has high peak to power ratio (PAPR). High PAPR makes problems such as signal distortion and circuit cost increasing. To solve the problemsm several PAPR reduction methods have been proposed. However, synchronization and orthogonality in OFDM systems may be a limitation to reduce latency for 5G networks. Generalized frequency division multiplexing (GFDM) is one of the possible solutions for asynchronous and non-orthogonal systems, which are more preferable to reduce the latency. However, multiple subsymbols in GFDM result in more superposition in time domain, GFDM has higher PAPR. Selective mapping (SLM) is one of PAPR reduction techniques in OFDM, which uses phase shift. The PAPR of GFDM SLM is compared to conventional GFDM and OFDM SLM in terms of PAPR reduction enhancement via numerical simulations. In addition, the out-of-band performance is analyzed in the aspect of asynchronous condition interference.

Key Techniques and Performance Comparison of 5G New Waveform Technologies (5G 새로운 파형 핵심 기술 및 성능 비교 분석)

  • Kang, Hyeon Su;Song, Young Bae;Kwon, Doyle;Kim, Duk Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.142-155
    • /
    • 2016
  • In order to satisfy 5th generation mobile system's requirements, recently many works have been done in various layers. Especially in physical layer, new waveforms like Filter bank Multi-Carrier(FBMC), Universal Filtered Multi-Carrier(UFMC), Generalized Frequency Division Multiplexing(GFDM) have been proposed and their performance have been evaluated. But most previous researches have provided limited information by comparing couple new waveforms each other with different assumptions and simulation parameters. In this paper, we investigate the key technique of each 5G new waveform, and compare them in various aspects and the same simulation environment, and finally provide what waveform is appropriate in different application scenarios.

Adaptive threshold for discrete fourier transform-based channel estimation in generalized frequency division multiplexing system

  • Vincent Vincent;Effrina Yanti Hamid;Al Kautsar Permana
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.392-403
    • /
    • 2024
  • Even though generalized frequency division multiplexing is an alternative waveform method expected to replace the orthogonal frequency division multiplexing in the future, its implementation must alleviate channel effects. Least-squares (LS), a low-complexity channel estimation technique, could be improved by using the discrete Fourier transform (DFT) without increasing complexity. Unlike the usage of the LS method, the DFT-based method requires the receiver to know the channel impulse response (CIR) length, which is unknown. This study introduces a simple, yet effective, CIR length estimator by utilizing LS estimation. As the cyclic prefix (CP) length is commonly set to be longer than the CIR length, it is possible to search through the first samples if CP is larger than a threshold set using the remaining samples. An adaptive scale is also designed to lower the error probability of the estimation, and a simple signal-to-interference-noise ratio estimation is also proposed by utilizing a sparse preamble to support the use of the scale. A software simulation is used to show the ability of the proposed system to estimate the CIR length. Due to shorter CIR length of rural area, the performance is slightly poorer compared to urban environment. Nevertheless, satisfactory performance is shown for both environments.