Journal of the Korean Data and Information Science Society
/
제26권6호
/
pp.1479-1494
/
2015
최적의 포트폴리오를 선택하기 위한 연구는 평균-분산모형을 시작으로 다양하게 진행되어 왔다. 과거에는 위험자산의 확률분포가 정규분포를 따른다고 가정하여, 투자자가 보유한 위험자산의 분산이 최소화되고 기대수익률이 최대가 되도록 포트폴리오를 구성하도록 하였다. 그러나 실제 위험자산의 분포에는 극단적인 사건들이 많이 발생하기 때문에 정규분포보다 훨씬 꼬리부분이 두꺼우며, 또한 왼쪽꼬리와 오른쪽꼬리가 대칭적이지도 않은 것으로 밝혀졌다. 이에 본 논문에서는 위험자산의 확률분포를 극단치 이론에서 널리 사용되는 일반화 파레토분포 (GPD)로 모형화하였고 체계적인 위험의 추정을 위하여 VaR를 이용하는 한편, 최적의 포트폴리오의 탐색을 위해서는 유전자 알고리즘을 사용하였다. 제안 방법의 적정성을 확인하기 위해 국내 증시에서 최적 포트폴리오를 탐색해 보았으며, 그 결과 GPD로 투자자산의 위험을 추정하였을 때 가장 좋은 결과를 얻을 수 있었다.
3개의 매개변수(location, scale, shape)로 이루어진 GEV와 GLO 분포는, 미국의 공식적인 홍수빈도 분포인 Log Pearson Type III와 함께 수문분야에서 중요한 위치를 차지하고 있다. 본 연구에서는 Monte Carlo 실험을 이용하여 GEV와 GLO 분포에서 서로 다른 두 지점의 유출량 자료를 생성하여 L-CV(L-moment Coefficient of Variation; $\tau_2$)와 L-CS(L-moment Coefficient of Skewness; $\tau_3$)를 추정하였으며, L-moment 추정값들 간의 교차상관$(\tau_2-\tau_2,\;\tau_3-\tau_3,\;\tau_2-\tau_3)$과 유출량 자료간의 교차상관의 관계를 Simple Power 함수를 이용하여 유도하였다. 실험 과정에서 GEV와 GLO 분포가 비현실적인 음수 유출량을 생성하여, 실험 결과에 큰 영향이 있음을 확인하여, 두 분포에서 생성된 유출량 자료에서 음수값을 제외한 GEV+와 GLO+ 분포를 이용하여 관계식을 유도하고 이를 GEV와 GLO 분포의 결과와도 비교하였다. 본 연구에서 도출된 관계식은 향후 Generalized Least Square 회귀식을 이용하여 홍수분포의 지역 매개변수를 추정하기 위해 활용성이 클 것으로 기대한다.
대형 교통사고는 많은 인명피해를 동반한다. 교통사고를 효율적으로 대처하기 위해선 하루 동안 발생할 수 있는 최대 교통사고 수와 사망자 수, 중상자 수가 정량적으로 제시되어야 한다. 본 연구는 교통사고분석시스템에서 제공하는 2005년부터 2018년까지 전국에서 발생한 일 최대 교통사고 수, 사망자 수, 중상자 수 자료를 사용하여 15년, 30년, 50년에 한 번 발생할 수 있는 최대값을 제시하고자 한다. 지역별 교통사고의 특성을 살펴보기 위해 수도권, 충청권, 경북권, 호남권, 경남권으로 구분하여 일반화극단치분포(GEV분포)에 적합시켰다. GEV분포의 모수는 L-적률추정법으로 추정하였고, Anderson Darling 검정과 Cramer-von Mises 검정으로 분포의 적합성을 확인하였다. 분석결과 50년에 한 번 발생할 수 있는 일 최대 교통사고 수는 수도권 401건, 경남권 168건, 경북권 455건, 충청권 136건, 호남권 205건이다. 인구수와 자동차 등록수가 많은 수도권에 비해 경북권은 면적이 넓고 산지지형이 많으며 산업공단으로 인한 물류이동이 많아 교통사고 수가 상대적으로 높게 나타났다.
확률강우량은 수공구조물의 설계에 있어 중요한 역할을 하며 이러한 확률강우량의 산정은 일반적으로 일변량 빈도해석을 수행하고 최적의 확률분포형을 찾아냄으로써 계산된다. 하지만 일변량 빈도해석은 수행 시 지속기간이 제한적이라는 단점이 있으며 이를 보완하기 위해 본 연구에서는 이변량 빈도해석을 수행하였다. 다변량 모형인 copula 모형 중3가지의 분포형을 이용하여 5개 지점의 연최대강우사상에 대해 이 변량 빈도해석을 수행하였으며 확률변수로 강우량과 지속기간을 사용하였다. 주변분포형은 강우량에는 Gumbel (GUM), generalized logistic (GLO) 분포형, 지속기간에는 generalized extreme value (GEV), GUM, GLO 분포형이사용됐으며 copula 모형은Frank, Joe, Gumbel-Hougaard 모형을 이용하였다. 주변분포형의 매개변수는 확률가중모멘트법을 이용하여 추정하였으며, copula 모형의 매개변수는 준모수방법인 의사최우도법을 사용하여 구하였다. 이를 통해 얻어진 확률강우량을 주변분포형과 copula 모형을바꾸어가며 비교하였다. 그 결과, 주변분포형의 종류에 따른 변화에서는 지속기간의 분포형에는 크게 영향을 받지 않는 것으로 나타났다. 강우량의 분포형에 따라서는 조금씩 차이가 났으며 강우량의 분포형이 GUM일 경우, GLO일 때에 비해 재현기간이 증가할수록 확률강우량이 증가하는 경향이 두드러졌다. Copula 모형별로 비교해보았을 때, Joe, Gumbel-Hougaard 모형은 비슷한 경향을 나타내었으며 Frank 모형은 재현기간의 증가에 따른 확률강우량의 증가가 강하게 나타냈다.
This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.
최근 우리나라는 전 지구적인 기후변화로 인하여 집중호우 및 돌발 홍수와 같은 극치 사상들이 증가하고 있는 추세이며, 이에 대한 분석을 위해 극치 분포를 이용한 수문통계적 특성에 대한 접근이 주로 이루어지고 있다. 이를 위해서는 충분한 수의 자료가 필요하나 우리나라 강우자료는 지점별로 자료 보유 년 수가 비교적 많지 않기 때문에, 이러한 문제를 극복하기 위하여 하나의 지역, 즉 주어진 지점을 포함하여 수문학적으로 동일한 조건을 만족하는 주변 지점의 자료를 모두 포함하여 빈도해석을 실시하는 지역빈도해석이 필요하다. 따라서 본 연구에서는 지역빈도해석과 두 개의 형상매개변수를 포함하여 다양한 극치 수문통계특성을 나타낼 수 있다고 알려진 Burr XII 분포를 이용하여 우리나라 강우자료에 대한 그 적용성을 살펴보았다. 이를 위해 군집분석을 통한 강우지점의 지역화 과정을 거치고 분류된 지역을 L-moment ratio diagram에 도시하여, Burr XII 분포 영역 내 포함여부를 통해 Burr XII 분포의 적합도를 도시적으로 살펴보고, Hosking and Wallis (1997)이 제안한 적합성 척도($^{IST}$)를 통한 적합성 여부를 판별하였다. 또한 우리나라 강우자료에 비교적 적합하다고 알려진 분포인 generalized extreme value, generalized logistic, Gumbel 분포와의 비교를 위해, 전체 지역에 대하여 재현기간에 따른 상대편의 (relative bias)와 상대평균제곱근오차 (relative root mean square error)를 산정하여 Burr XII 분포형의 적용 가능성을 살펴보았다.
This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among applied distributions. Regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the legions and consecutive durations were derived by the regional frequency analysis.
극치사상을 예측하기 위한 기존의 빈도분석 결과의 이용에 대한 많은 문제점들이 부각되고 있다. 특히, 통계적 모형을 이용하기 위해서 흔히 사용되는 점근적 모형 (asymptotic model)의 합리적인 검토 없는 외삽 (extrapolation)은 산정된 확률 값을 과대 또는 과소평가하는 문제를 일으켜, 예측결과에 대한 불확실성을 과다하게 산정함으로써 불확실성에 대한 신뢰도를 감소시키는 문제가 있다. 그러므로 본 연구에서는 국내에서 극치강우사상을 포함한 강우자료의 빈도분석에 대한 연구사례를 제공하고 점근적 모형을 사용하는 경우 발생되는 불확실성을 감소시키기 위한 방법론을 제시하였다. 이를 위하여 본 연구에서는 극치강우사상의 빈도분석을 수행하는 데 있어서 최근 들어 여러 분야에서 다양하게 적용되고 있는 Bayesian MCMC (Markov Chain Monte Carlo) 방법을 사용하였으며, 그 결과를 최우추정방법 (Maximum likelihood estimation method)과 비교하였다. 특히 강우사상의 점 빈도분석에 흔히 이용되는 확률밀도함수로 GEV (Generalized Extreme Value) 분포와 Gumbel 분포를 모두 고려하여 두 분포의 결과를 비교하였으며, 이 과정에서 각각의 산정결과 및 불확실성은 근사식을 이용한 최우추정방법과 Bayesian 방법을 이용하여 각각 비교 및 분석되었다.
본 연구에서는 한반도에서 발생했던 과거 가뭄사상의 정량적 평가를 위한 가뭄심도-지속기간-생기빈도(Severity-Duration-Frequency, SDF) 곡선을 유도하기 위해서 가뭄지수를 이용한 빈도해석을 실시하였다. 분석지점으로는 4대강 유역을 중심으로 하는 기상청 산하의 서울, 대전, 대구, 광주, 부산관측소를 선정하였으며 강수자료는 1974~2010년(37년)의 강수 자료를 이용하였다. 가뭄빈도해석에는 기상학적 가뭄지수인 SPI (Standardized Precipitation Index)를 선정하였으며 확률분포형에 대한 적합도 검정에서는 일반극치분포(GEV, Generalized Extreme Value)가 최적의 확률분포형으로 선정되었다. 가뭄지수의 빈도해석 통하여 유도된 주요 관측소별 SDF (Severity-Duration-Frequency) 곡선을 이용하여 과거의 주요 가뭄사상에 대한 재현기간을 제시하였으며 1994~1995년 가뭄의 경우 남부지방을 중심으로 하는 극심한 가뭄으로서 광주관측소에서는 50~100년, 부산관측소에서는 100~200년의 높은 재현기간을 나타내었다. 그밖에 1988~1989년 가뭄의 경우 서울관측소에서는 300년의 재현기간을 나타내었다.
Journal of the Korean Data and Information Science Society
/
제27권4호
/
pp.1001-1012
/
2016
대기오염물질이 인간의 건강에 악영향을 미치는 사실은 잘 알려져 있다. 유엔 환경 계획 (united nations environment program; UNEP) 보고서에 따르면, 미세먼지와 일산화탄소 오염물질로 연간 전 세계에서 430만 명이 목숨을 잃었다. 일산화탄소는 탄소와 산소로 구성된 화합물로 가정에서 생성되는 독성 가스 중 가장 위험한 가스이다. 연구를 위하여 2004년부터 2013년까지 10년간 대구 경북 지역의 대기오염관측소에서 관측된 1시간, 6시간, 12시간, 24시간 평균 일산화탄소 농도 자료를 사용하였다. 일반화 극단치 분포의 모수는 최우추정법과 L-적률추정법을 통해 추정하였고 적합도 검정을 수행하였다. 본 연구의 표본 수가 크지 않으므로 L-적률추정법이 최대우도법에 비해 모수추정에 적합하였다. 또한, 5년, 10년, 20년, 40년 재현수준을 추정하여 대구 경북 지역 일산화탄소 위험지역을 살펴보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.