• Title/Summary/Keyword: Generalized Extreme Value 분포

Search Result 80, Processing Time 0.027 seconds

Prediction of recent earthquake magnitudes of Gyeongju and Pohang using historical earthquake data of the Chosun Dynasty (조선시대 역사지진자료를 이용한 경주와 포항의 최근 지진규모 예측)

  • Kim, Jun Cheol;Kwon, Sookhee;Jang, Dae-Heung;Rhee, Kun Woo;Kim, Young-Seog;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.119-129
    • /
    • 2022
  • In this paper, we predict the earthquake magnitudes which were recently occurred in Gyeongju and Pohang, using statistical methods based on historical data. For this purpose, we use the five-year block maximum data of 1392~1771 period, which has a relatively high annual density, among the historical earthquake magnitude data of the Chosun Dynasty. Then, we present the prediction and analysis of earthquake magnitudes for the return level over return period in the Chosun Dynasty using the extreme value theory based on the distribution of generalized extreme values (GEV). We use maximum likelihood estimation (MLE) and L-moments estimation for parameters of GEV distribution. In particular, this study also demonstrates via the goodness-of-fit tests that the GEV distribution can be an appropriate analytical model for these historical earthquake magnitude data.

On the Applicability of the Extreme Distributions to Korean Stock Returns (한국 주식 수익률에 대한 Extreme 분포의 적용 가능성에 관하여)

  • Kim, Myung-Suk
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.115-126
    • /
    • 2007
  • Weekly minima of daily log returns of Korean composite stock price index 200 and its five industry-based business divisions over the period from January 1990 to December 2005 are fitted using two block-based extreme distributions: Generalized Extreme Value(GEV) and Generalized Logistic(GLO). Parameters are estimated using the probability weighted moments. Applicability of two distributions is investigated using the Monte Carlo simulation based empirical p-values of Anderson Darling test. Our empirical results indicate that both the GLO and GEV models seem to be comparably applicable to the weekly minima. These findings are against the evidences in Gettinby et al.[7], who claimed that the GEV model was not valid in many cases, and supported the significant superiority of the GLO model.

Parameter Estimation and Analysis of Extreme Highest Tide Level in Marginal Seas around Korea (한국 연안 최극 고조위의 매개변수 추정 및 분석)

  • Jeong, Shin-Taek;Kim, Jeong-Dae;Ko, Dong-Hui;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.482-490
    • /
    • 2008
  • For a coastal or harbor structure design, one of the most important environmental factors is the appropriate extreme highest tide level condition. Especially, the information of extreme highest tide level distribution is essential for reliability design. In this paper, 23 set of extreme highest tide level data obtained from National Oceanographic Research Institute(NORI) were analyzed for extreme highest tide levels. The probability distributions considered in this research were Generalized Extreme Value(GEV), Gumbel, and Weibull distribution. For each of these distributions, three parameter estimation methods, i.e. the method of moments, maximum likelihood and probability weighted moments, were applied. Chi-square and Kolmogorov-Smirnov goodness-offit tests were performed, and the assumed distribution was accepted at the confidence level 95%. Gumbel distribution which best fits to the 22 tidal station was selected as the most probable parent distribution, and optimally estimated parameters and extreme highest tide level with various return periods were presented. The extreme values of Incheon, Cheju, Yeosu, Pusan, and Mukho, which estimated by Shim et al.(1992) are lower than that of this result.

Derivation of Relationship between Cross-site Correlation among data and among Estimators of L-moments for Generalize Extreme value distribution (Generalized Extreme Value 분포 자료의 교차상관과 L-모멘트 추정값의 교차상관의 관계 유도)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.259-267
    • /
    • 2009
  • Generalized Extreme Value (GEV) distribution is recommended for flood frequency and extreme rainfall distribution in many country. L-moment method is the most common estimation procedure for the GEV distribution. In this study, the relationships between the cross-site correlations between extreme events and the cross-correlation of estimators of L-moment ratios (L-moment Coefficient of Variation (L-CV) and L-moment Coefficient of Skewness (L-CS)) for data generated from GEV distribution were derived by Monte Carlo simulation. Those relationships were fit to the simple power function. In this Monte Carlo simulation, GEV+ distribution were employed wherein unrealistic negative values were excluded. The simple power models provide accurate description of the relationships between cross-correlation of data and cross-correlation of L-moment ratios. Estimated parameters and accuracies of the power functions were reported for different GEV distribution parameters combinations. Moreover, this study provided a description about regional regression approach using Generalized Least Square (GLS) regression method which require the cross-site correlation among L-moment estimators. The relationships derived in this study allow regional GLS regression analyses of both L-CV and L-CS estimators that correctly incorporate the cross-correlation among GEV L-moment estimators.

Evaluation of Extreme Sea Levels Using Long Term Tidal Data (검조기록을 이용한 극치해면 산정)

  • 심재설;오병철;김상익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.250-260
    • /
    • 1992
  • Two methods for computing extreme sea levels, which are the extreme probability method and the joint probability method, are examined at five different ports (Incheon, Cheju, Yeosu, Pusan, Mukho). The extreme probability mothod estimates the extreme sea levels from three different probability papers of Gumbel, Weibull and generalized extreme value(GEV) using the least square method, conventional moment method and probability weighted moment method. respectively. The results showed that the extreme sea levels estimated by the Gumbel paper or the least square method appeared higher than those calculated by other papers or methods. The extreme values estimated by the extreme probability method are approximately 5-10 cm lower than the values by the joint probability method.

  • PDF

Frequency Analyses for Extreme Rainfall Data using the Burr XII Distribution (Burr XII 모형을 이용한 우리나라 극한 강우자료 빈도해석)

  • Seo, Jungho;Shin, Ju-Young;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.335-335
    • /
    • 2018
  • 최근 이상기후현상으로 지구상의 여러 지역에서 극치 수문 사상의 발생 빈도와 강도가 날로 증가하고 있는 추세이다. 이에 대해 수공구조물의 설계를 위한 극치강우사상의 빈도해석에 있어서 적절한 확률분포모형의 적용은 매우 중요하다. 이에 수문통계분야에서는 generalized extreme value(GEV), generalized logistic(GLO), Gumbel(GUM) 모형과 같은 극치 분포를 이용한 수문통계적 특성에 대한 접근이 주로 이루어지고 있다. 하지만 우리나라 강우 사상의 경우 GEV 분포와 GUM 분포가 비교적 적합한 것으로 알려져 있지만 하나의 형상매개변수를 가지고 있어 분포 모형이 표현할 수 있는 통계적 특성에 한계를 가지고 있다. 기존의 GEV나 GUM분포로는 적절히 재현되지 않는 자료들을 분석하기 위해서 두 개의 형상매개변수를 가지는 분포형에 대한 연구가 진행되고 있다. 이에 본 연구에서는 두 개의 형상매개변수를 가지는 Burr XII 분포형의 우리나라 극한 강우자료에 대한 적용성을 평가하였다. Burr XII 분포형은 gamma나 exponential 분포 모형처럼 양의 확률변수만을 가지고, Cauchy나 Pareto 분포 모형처럼 두꺼운 꼬리(heavy-tailed distribution) 형상을 나타내기 때문에 비교적 큰 확률변수가 빈번히 나타나는 극치사상에도 적합한 것으로 알려져 있다. 이를 위해 Burr XII 분포 모형을 이용하여 우리나라 강우자료에 대해 지점빈도해석 및 지역빈도해석을 수행하고 우리나라 강우자료에 비교적 적합하다고 알려진 분포인 GEV, GLO, GUM 분포형을 통해 산정된 결과와 비교하였다.

  • PDF

Non-stationary Frequency Analysis with Climate Variability using Conditional Generalized Extreme Value Distribution (기후변동을 고려한 조건부 GEV 분포를 이용한 비정상성 빈도분석)

  • Kim, Byung-Sik;Lee, Jung-Ki;Kim, Hung-Soo;Lee, Jin-Won
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.499-514
    • /
    • 2011
  • An underlying assumption of traditional hydrologic frequency analysis is that climate, and hence the frequency of hydrologic events, is stationary, or unchanging over time. Under stationary conditions, the distribution of the variable of interest is invariant to temporal translation. Water resources infrastructure planning and design, such as dams, levees, canals, bridges, and culverts, relies on an understanding of past conditions and projection of future conditions. But, Water managers have always known our world is inherently non-stationary, and they routinely deal with this in management and planning. The aim of this paper is to give a brief introduction to non-stationary extreme value analysis methods. In this paper, a non-stationary hydrologic frequency analysis approach is introduced in order to determine probability rainfall consider changing climate. The non-stationary statistical approach is based on the conditional Generalized Extreme Value(GEV) distribution and Maximum Likelihood parameter estimation. This method are applied to the annual maximum 24 hours-rainfall. The results show that the non-stationary GEV approach is suitable for determining probability rainfall for changing climate, sucha sa trend, Moreover, Non-stationary frequency analyzed using SOI(Southern Oscillation Index) of ENSO(El Nino Southern Oscillation).

A Study on the Estimation of Extreme Quantile of Probability Distribution (확률 분포형의 극치 수문량 예측 능력 평가에 관한 연구)

  • Jung, Jinseok;Shin, Hongjoon;Ahn, Hyunjun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.399-400
    • /
    • 2017
  • 홍수나 가뭄 등 극치 현상의 통계분석 및 빈도해석에 있어 극치분포형이 널리 사용되고 있으며, 이러한 극치분포형의 특성을 이해하기 위해서는 분포형의 오른쪽 꼬리(right tail) 부분 특성을 자세히 분석할 필요가 있다. 이에 따라 본 연구에서는 Monte Carlo 모의를 통하여 다양한 극치분포형의 오른쪽 꼬리 부분의 통계적 특성 및 그 예측 능력을 연구하였다. 극치분포형으로는 우리나라 확률수문량 산정에 널리 활용되고 있는 generalized extreme value (GEV), Gumbel, generalized logistic 분포를 사용하였으며, 매개변수 산정 방법으로는 확률가중모멘트법을 사용하였다. 모의실험의 모분포로는 수문빈도해석에서 많이 사용되는 GEV 분포를 사용하였고, 30년 이상 자료를 보유한 기상청 지점 자료의 왜곡도를 조사하여 모의실험에 사용되는 모집단의 왜곡도로 가정하여 표본 자료를 발생시켰다. 예측 능력의 평가는 재현기간 10~1000년의 확률수문량을 왜곡도계수를 고려한 GEV 도시위치공식을 이용하여 GEV 확률지에 도시하고, 평균제곱근오차(root mean square error), 편의(bias), 평균상대오차(mean relative difference), 평균절대상대오차(mean absolute relative difference)를 이용하여 최적 분포형을 선정함으로써 이루어진다. 또한 예측 능력 평가결과의 타당성 확인을 위해 극치분포형의 적합정도를 잘 나타낸다고 알려진 modified Anderson-Darling 방법의 검정결과와 비교하여 적절성을 확인하였다.

  • PDF

Analysis of Extreme Values of Daily Percentage Increases and Decreases in Crude Oil Spot Prices (국제현물원유가의 일일 상승 및 하락율의 극단값 분석)

  • Yun, Seok-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.835-844
    • /
    • 2010
  • Tools for statistical analysis of extreme values include the classical annual maximum method, the modern threshold method and variants improving the second one. While the annual maximum method is to t th generalized extreme value distribution to the annual maxima of a time series, the threshold method is to the generalized Pareto distribution to the excesses over a high threshold from the series. In this paper we deal with the Poisson-GPD method, a variant of the threshold method with a further assumption that the total number of exceedances follows the Poisson distribution, and apply it to the daily percentage increases and decreases computed from the spot prices of West Texas Intermediate, which were collected from January 4th, 1988 until December 31st, 2009. According to this analysis, the distribution of daily percentage increases as well as decreases turns out to have a heavy tail, unlike the normal distribution, which coincides well with the general phenomenon appearing in the analysis of lots of nowaday nancial data.