• Title/Summary/Keyword: Generalized Bloch space

Search Result 5, Processing Time 0.018 seconds

GENERALIZED COMPOSITION OPERATORS FROM GENERALIZED WEIGHTED BERGMAN SPACES TO BLOCH TYPE SPACES

  • Zhu, Xiangling
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1219-1232
    • /
    • 2009
  • Let H(B) denote the space of all holomorphic functions on the unit ball B of $\mathbb{C}^n$. Let $\varphi$ = (${\varphi}_1,{\ldots}{\varphi}_n$) be a holomorphic self-map of B and $g{\in}2$(B) with g(0) = 0. In this paper we study the boundedness and compactness of the generalized composition operator $C_{\varphi}^gf(z)=\int_{0}^{1}{\mathfrak{R}}f(\varphi(tz))g(tz){\frac{dt}{t}}$ from generalized weighted Bergman spaces into Bloch type spaces.

OPERATORS ON GENERALIZED BLOCH SPACE

  • Choi, Ki-Seong;Yang, Gye-Tak
    • The Pure and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.17-21
    • /
    • 1998
  • In [5], Zhu introduces a bounded operator T from $L^{\infty}$(D) into Bloch space B. In this paper, we will consider the generalized Bloch spaces $B_{q}$ and find bounded operator from $L^{\infty}$(D) into $B_{q}$.

  • PDF

Generalized Integration Operator between the Bloch-type Space and Weighted Dirichlet-type Spaces

  • Ardebili, Fariba Alighadr;Vaezi, Hamid;Hassanlou, Mostafa
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.519-534
    • /
    • 2020
  • Let H(𝔻) be the space of all holomorphic functions on the open unit disc 𝔻 in the complex plane ℂ. In this paper, we investigate the boundedness and compactness of the generalized integration operator $$I^{(n)}_{g,{\varphi}}(f)(z)=\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^z\;f^{(n)}({\varphi}({\xi}))g({\xi})\;d{\xi},\;z{\in}{\mathbb{D}},$$ between Bloch-type and weighted Dirichlet-type spaces, where 𝜑 is a holomorphic self-map of 𝔻, n ∈ ℕ and g ∈ H(𝔻).

SOME APPLICATIONS FOR GENERALIZED FRACTIONAL OPERATORS IN ANALYTIC FUNCTIONS SPACES

  • Kilicman, Adem;Abdulnaby, Zainab E.
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.581-594
    • /
    • 2019
  • In this study a new generalization for operators of two parameters type of fractional in the unit disk is proposed. The fractional operators in this generalization are in the Srivastava-Owa sense. Concerning with the related applications, the generalized Gauss hypergeometric function is introduced. Further, some boundedness properties on Bloch space are also discussed.

BOUNDEDNESS OF 𝓒b,c OPERATORS ON BLOCH SPACES

  • Nath, Pankaj Kumar;Naik, Sunanda
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.467-474
    • /
    • 2022
  • In this article, we consider the integral operator 𝓒b,c, which is defined as follows: $${\mathcal{C}}^{b,c}(f)(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\frac{f(w)*F(1,1;c;w)}{w(1-w)^{b+1-c}}}dw,$$ where * denotes the Hadamard/ convolution product of power series, F(a, b; c; z) is the classical hypergeometric function with b, c > 0, b + 1 > c and f(0) = 0. We investigate the boundedness of the 𝓒b,c operators on Bloch spaces.