• 제목/요약/키워드: General Sections

검색결과 383건 처리시간 0.024초

Optimum design of reinforced concrete columns subjected to uniaxial flexural compression

  • Bordignon, R.;Kripka, M.
    • Computers and Concrete
    • /
    • 제9권5호
    • /
    • pp.327-340
    • /
    • 2012
  • The search for a design that meets both performance and safety, with minimal cost and lesser environmental impact was always the goal of structural engineers. In general, the design of conventional reinforced concrete structures is an iterative process based on rules of thumb established from the personal experience and intuition of the designer. However, such procedure makes the design process exhaustive and only occasionally leads to the best solution. In such context, this work presents the development and implementation of a mathematical formulation for obtaining optimal sections of reinforced concrete columns subjected to uniaxial flexural compression, based on the verification of strength proposed by the Brazilian standard NBR 6118 (ABNT 2007). To minimize the cost of the reinforced concrete columns, the Simulated Annealing optimization method was used, in which the amount and diameters of the reinforcement bars and the dimensions of the columns cross sections were considered as discrete variables. The results obtained were compared to those obtained from the conventional design procedure and other optimization methods, in an attempt to verify the influence of resistance class, variations in the magnitudes of bending moment and axial force, and material costs on the optimal design of reinforced concrete columns subjected to uniaxial flexural compression.

Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics

  • Aydogdu, Ibrahim;Carbas, Serdar;Akin, Alper
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.93-112
    • /
    • 2017
  • Metaheuristic algorithms in general make use of uniform random numbers in their search for optimum designs. Levy Flight (LF) is a random walk consisting of a series of consecutive random steps. The use of LF instead of uniform random numbers improves the performance of metaheuristic algorithms. In this study, three discrete optimum design algorithms are developed for steel skeletal structures each of which is based on one of the recent metaheuristic algorithms. These are biogeography-based optimization (BBO), brain storm optimization (BSO), and artificial bee colony optimization (ABC) algorithms. The optimum design problem of steel skeletal structures is formulated considering LRFD-AISC code provisions and W-sections for frames members and pipe sections for truss members are selected from available section lists. The minimum weight of steel structures is taken as the objective function. The number of steel skeletal structures is designed by using the algorithms developed and effect of LF is investigated. It is noticed that use of LF results in up to 14% lighter optimum structures.

General Purpose Cross-section Analysis Program for Composite Rotor Blades

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Do-Hyung;Yun, Chul-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.77-85
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with arbitrary cross-section profiles and material distributions. The modulus weighted approach is used to take into account the non-homogeneous material characteristics of advanced blades. The CLPT (Classical Lamination Plate Theory) is applied to obtain the effective moduli of the composite laminate. The location of shear center for any given cross-sections are determined according to the Trefftz' definition while the torsion constants are obtained using the St. Venant torsion theory. A series of benchmark examples for beams with various cross-sections are illustrated to show the accuracy of the developed cross-section analysis program. The cross section cases include thin-walled C-channel, I-beam, single-cell box, NACA0012 airfoil, and KARI small-scale blades. Overall, a reasonable correlation is obtained in comparison with experiments or finite element analysis results.

Deflection calculation method on GFRP-concrete-steel composite beam

  • Tong, Zhaojie;Song, Xiaodong;Huang, Qiao
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.595-606
    • /
    • 2018
  • A calculation method was presented to calculate the deflection of GFRP-concrete-steel beams with full or partial shear connections. First, the sectional analysis method was improved by considering concrete nonlinearity and shear connection stiffness variation along the beam direction. Then the equivalent slip strain was used to take into consideration of variable cross-sections. Experiments and nonlinear finite element analysis were performed to validate the calculation method. The experimental results showed the deflection of composite beams could be accurately predicted by using the theoretical model or the finite element simulation. Furthermore, more finite element models were established to verify the accuracy of the theoretical model, which included different GFRP plates and different numbers of shear connectors. The theoretical results agreed well with the numerical results. In addition, parametric studies using theoretical method were also performed to find out the effect of parameters on the deflection. Based on the parametric studies, a simplified calculation formula of GFRP-concrete-steel composite beam was exhibited. In general, the calculation method could provide a more accurate theoretical result without complex finite element simulation, and serve for the further study of continuous GFRP-concrete-steel composite beams.

A Comparison on the Reproducibility of Parametric Bodies Used in the Virtual Garment System

  • Choi, Hee Eun;Nam, Yun Ja;Kim, Hye Suk
    • 한국의류산업학회지
    • /
    • 제16권2호
    • /
    • pp.266-274
    • /
    • 2014
  • Parametric bodies reproduce the actual shape of human body parts and should be convenient for general users to change size to judge the visual fit of clothes on-line. In this study, three parametric bodies(i.e. I, C, D ) were compared to verify the accuracy of the provided body dimensions and reproducibility to a target model. To compare reproducibility, the 20s female standard virtual model developed for an apparel industry by Korean agency for technology and standards is used. The investigation of existing parameters showed that the numbers and kinds of parameters provided by each program were different with some errors in notation; in addition, some of virtual body dimensions went beyond the maximum allowable error. The result of changing each parametric body to the 20s female standard body showed that D, C, I in order produced better reproducibility for body dimensions. There were different levels of protrusion and concavity in the virtual cross sections and virtual longitudinal sections despite the small differences in body dimensions and cross sectional areas; in addition, some parametric body was not bilateral symmetry. The results of this study can be used as basic information in the standardization of a virtual model used in a virtual garment program.

진동에 의한 평판 유리의 절단 거동 (Shearing Behavior of Flat Panel Glass by Oscillating Diamond)

  • 최성대;정선환;김기만;전재목;노영진
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2005
  • The localization of manufacturing technique development is actualizing for low cost with supplies of display devices. We need more high cutting technique because consumers want flat glasses of various sizes. Recently, most general two methods are normal wheel cutting and laser cutting, but both of them have some faults. First, the wheel cutting has cracks and sharp edges of sections. Second, it is easy for laser cutting to cut curved lines. however, it has thermal damage and low traverse speed. I suggest a new cutting method by high-wave frequency vibration wheel cutting(HFVC), which is good for quality improvement. Vertical cracks and crack depth is observed, after HFVC. When the average of the crack depth is $30{\mu}m$ and the average of the wallner liner depth is $200{\mu}m$, it has the most high quality of the sections in this experiment. As a result, when we consider between the normal wheel cutting method and the HFVC method, the latter has low cracks and good quality.

  • PDF

아스팔트 포장의 노면조직 특성 분석 (Analysis of Texture Characteristics of Asphalt Pavements)

  • 홍성재;이승우
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.1-6
    • /
    • 2017
  • PURPOSES : Pavement textures can be categorized into four according to wavelength: microtexture, macrotexture, megatexture (roads), and roughness. Pavement surface texture influences a number of aspects of tire-pavement interaction such as wet-weather friction, tire-pavement noise, splash, spray, tire-wear, and rolling resistance. In particular, macrotexture is the pavement surface characteristic that considerably impacts tire-pavement noise. In general, it can be demonstrated that tire-pavement noise increases with the increase of texture depth and wavelength. Recently, mean profile depth (MPD) and wavelength have been used to evaluate tire-pavement noise. This study aimed to identify the relationship between mean profile depth and average wavelength for asphalt pavement based on the information obtained on a number of asphalt pavement sections. METHODS : Profile data were collected from a number of expressway sections in Korea. In addition, mean profile depth and average wavelength were calculated by using this profile data. Statistical analysis was performed to determine the correlationship between mean profile depth and average wavelength. RESULTS:This study demonstrates a linear relationship between mean profile depth and average wavelength for asphalt concrete pavement. CONCLUSIONS :The strong relationship between mean profile depth and average wavelength of asphalt pavement was determined in this study.

직선늑골형선단면(直線肋骨型船斷面)을 가지는 주상체(柱狀體)의 자유수면(自由水面)에서의 상하동(上下動)에 수반(隨伴)되는 부가질량(附加質量) (Added Mass of Two Dimensional Cylinders with the Sections of Straight Frames Oscillation Vertically in a Free Surface)

  • 황종흘
    • 대한조선학회지
    • /
    • 제5권2호
    • /
    • pp.1-26
    • /
    • 1968
  • 직선늑골(直線肋骨) 및 단일배골(單一背骨)을 가지는 배의 단면(斷面)과 동일(同一)한 단면(斷面)의 주장체(柱狀體)가 고진동수(高振動數)로 이상유체(理想流體)의 자유수면(自由水面)에서 상하동(上下動)을 할 때 유체(流體)의 부가질량(附加質量)을 Schwarz-Christoffel 변환(變換)을 이용(利用)하여 해석(解析)하고 계통적(系統的)인 계산(計算)을 하였으며 그 결과(結果)를 Lewis forms에 대(對)한 결과(結果)와 비교(比較)하였다. 여기서 제시(提示)한 해석법(解析法)은 Lewis 이래(以來)의 등각사상법(等角寫像法)에 의(依)한 측면(側面) 및 선저(船底)에서의 접선조건(接線條件)에 관계(關係)없이 적용(適用)될 수 있으며, 복배골(復背骨)의 직선늑골형선단면(直線肋骨型船斷面)의 주상체(柱狀體)에 대(對)해서 확장(擴張)될 수 있다.

  • PDF

시뮬레이션을 이용한 컨테이너 터미널의 장치장 설계 (Yard Design of the Container Terminal using the Simulation)

  • 하태영;최용석;김우선
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.35-40
    • /
    • 2003
  • This paper presents a method for designing layout on the yard and evaluating alternative designs of the layout by applying simulation. The method is based on the concepts of the conventional port container terminal with a perpendicular yard layout. In general, yard design of the container terminal is consists of the two major parts. One is to divide yard area between the number of sections and the number of runs and the other is to decide the number of equipment that is the yard truck and yard crane. In the past days, this design was depended on the experience of the terminal operator and the structure of the conventional terminal layout because it is a very complex decision problem. In this paper we suggest the method of yard design as a conceptual procedure and estimate the efficiency of the container crane and the optimal the number of equipment using the simulation. Numerical examples are provided in order to illustrate the conceptual procedure. As the example, the suggested method and simulation are applied to the virtual container terminal with a perpendicular yard layout. In the results, the number of sections and runs on yard area, the number of yard truck per container crane and the number of yard crane per run are decided. In additional, the traffic among blocks on yard layout is estimated in terms of rate.

  • PDF

THE HARMONIC ANALYSIS ASSOCIATED TO THE HECKMAN-OPDAM'S THEORY AND ITS APPLICATION TO A ROOT SYSTEM OF TYPE BCd

  • Trimeche, Khalifa
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.221-267
    • /
    • 2019
  • In the five first sections of this paper we define and study the hypergeometric transmutation operators $V^W_k$ and $^tV^W_k$ called also the trigonometric Dunkl intertwining operator and its dual corresponding to the Heckman-Opdam's theory on ${\mathbb{R}}^d$. By using these operators we define the hypergeometric translation operator ${\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, and its dual $^t{\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, we express them in terms of the hypergeometric Fourier transform ${\mathcal{H}}^W$, we give their properties and we deduce simple proofs of the Plancherel formula and the Plancherel theorem for the transform ${\mathcal{H}}^W$. We study also the hypergeometric convolution product on W-invariant $L^p_{\mathcal{A}k}$-spaces, and we obtain some interesting results. In the sixth section we consider a some root system of type $BC_d$ (see [17]) of whom the corresponding hypergeometric translation operator is a positive integral operator. By using this positivity we improve the results of the previous sections and we prove others more general results.