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Added Mass of Two Dimensional Cylinders with the
Sections of Straight Frames Oscillating Vertically
in a Free Surface

by
J. H. Hwang*
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This work is a general treatment of added mass calculation of two-dimensional cylinders
with straight-framed sections and chines oscillating in the free surface of an ideal fluid
with high frequencies. Two and three perameter families in vertical oscillations are treated
by employing Schwarz-Christoffel transformation. The resulls are presented with regards to

geometrical parameters such as chine angles, sectional area coefficient and beam draft ratio.

Introduction

The hydrodsnamic added mass of two dimensional cylinders oscillating vertically at high frequencies in the

free surface is of interest to ship vibration, and sometimes to ship motion problems. The general class of

problems dealing with cylinders of straight frames and chines has not been treated previously.

After F.M. Lewis’ initial work [11** in 1929, Prohaska [2) has evaluated the inertia coefficient for a number
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of shapes by means of conformal transformations. Landweber and Macagno (3] have treated more general cases
including horizontal oscillations and derived the relations between the added mass and the sectional area
coefficient as well as beam-draft ratio. They (4] have also extended the range of available shapes by a more
general class of transformations involving a third parameter based on the moment of inertia of the section about
the transverse axis. Above works, strictly speaking, have dealt with oscillations at high frequencies, w—oo,
Actually, the frequency of oscillations in the range of interest in ship motions has an effect on the added mass.
Thus recently, Grim 75] and Tasai [6] have separately considered such effects, and Porter [7] and Paulling
8] have contributed by experimental confirmation.

For straight line sections, Lewis (1] has evaluated the inertia coefficient for rectangle and rhombus sections
vibrating vertically by employing the Schwarz-Christoffel tranformation. And, Wendel (9] has analyzed the
added masses for rectangular sections with bilge keels.

Recently Vugts [10] has performed theoretical computations of hydrodynamic coefficient of cylinders with
rectangle, Iriangle and other typical scctions using the same conformal tranformation as was used for Lewis
form. His work includes checking computation with experiments at finite frequencies for all three modes of
oscillation: heave, sway, and roll.

Hwang and Kim [11] have investigated cylinders with the typical straight frames in vertical oscillation at high
frequencies employing the Schwarz-Christoffel transformation, which includes added mass coefficient calculated
for twelve typical sections with vertical side and flat bottom using manual integration in the analysis. By
comparing the results with those of the Lewis forms having same sectional area coefficient and beam-draft
ratio, it was concluded that the magnitude of chine angle seems to be a dominant factor over the sectional area
coefficient on added mass coefficient for straight-framed sections. Since then, a number of computations has now
been performed and a systematic relationship between the added mass coefficient and each variable concerned
can be presented for various straight frame and chine sections.

General Formulation

Formulation of the Problem

The added mass calculation for a two dimensional cylinder with straight-framed section, when it oscillates
vertically at high frequencies in the free surface of an infinite invicid fluid, may be accomplished by the

Schwarz-Christoffel transformation as stated previously [11]. Take the y-axis in the free surface and the x-axis
normal to it as shown in Fig. 1.

The transformation of the interior of a polygon PQR-VWX in the z-plane into a half plane above the real
axis in the {-plane may be expressed in the form

Nomenclature

A == sectional area n = distance measured along normal to side of caction

b = half beam of section r = modulus of complex variables in z plane

B = full beam of section rx = length of side of section near free surface

g = acceleration of gravity 71 = length of side of section near bottom

G,G’ = designation of section and its image s = arc length measured along side of section

H = draft of section T = kinetic energy of fluid

k.gi = corresponding value of p at vertices of section U = vertical component of velocity of section

ks = added mass coefficient for vertical vibration w = complex potential = ¢ + i

K = wave number = w?/g z,y = horizontal and vertical co-ordinates in plane of

n' = added mass for vertical vibration seclion
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where z and 7 are the complex variables with z=x+iy and {=¢+i5, C may be complex or real, &, 4, &, -

are tho particular values of ¢ at the vertices of the polygon and ay,ay,a3, are the angles at corresponding

vertices as shown. Integrating (1) we get
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Fig. 1 Mapping of polygonal houndary into a real axis

where L is an arbitrary constant which can be removed by a proper selection of origin in the z-plane. The
proper choice of C will fix the scale and orientation.

In applications such as this we are concerned with simple polvgons with two of its sides extending to the
infinities as in the above figure. The factors corresponding to & = — oo and oo arc omitted from the cquation
of transformation, and the angle « does not appear. The complex polential for the rectilinear flow in -plane

is expressed by

€))

for the unit velocity, where

w(@) = ¢ + i¢,

Nomenclature

z = complex variables = = + iy — velocity potential refered to the flow around the
P p

stationary polygon : —Fe=(u,v) velocity components

¢

the moving polygen

ax = interior angle at vertices of polygon

8,7 == parameters controlling chine angles velocity potential refered to the flow around

2

5

g = complex variables == £ + iy

&, — horizontal and vertical co-ordinates in { plane ¢ = stream function refered to the flow around the

& = points on real axis of {-plane
0 = angle of polar co-ordinate system in z-plane
H/R

4 = rcciprocal of beam-draft ratio

p = mass density of fluid

stationary polrgon
@' = stream [unction refered to the flow around the
moving polygon

o = circular frequency of oscillation of cylinder
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and ¢ and ¢ are the velocity potential and the stream function respectively.
Hence we get
pi =&, i=1,28- . @
Then, a rectilinear flow in {-plane may be transformed into a flow in z-plane with a polygonal boundary
which is at rest in the fluid by the transformation
- ay ay

2 - )T (W — )T (@ — g T heeee, ®)

Now we can consider the complex potential for the flow around a stationary polygon in z-plane, say
w(z) = ¢ + i (6)
In Fig.1 (2), polygon QRSTU~U'T’S'R’Q is symmetrical about both y-axis and x-axis, and the part of the
figure TUVWV'U'T’ (say G) may be considered as a hull section with straight-frames. The figure T'S’R‘QRST

is denoted as G’ hereafter.
The rectilinear flow around the closed polygon QRSTU~S'R’Q is symmetrical about both x-axis and y-axis.
Therefore it is sufficient to consider the flow around the polygon PQRSTUVWX whose boundaries consist of

stream line corresponding to ¢=0.

Boundary Conditions

Equation (5) represents the flow past a stationary polygon. We wish to obtain the cnergy of the flow of a
moving polygon in a fluid stationary at infinity, we must accordingly add to the values of ¢ and ¢ the terms
0= — z. 1= —y )

giving =9 —z, ¢ =¢ -y @
for the moving polygon, where p’ and ¢’ are velocity potential and stream function refered to the flow around
the moving polygon.

When the body is oscillating with an angular frequency w, the boundary condition on the free surface is

dp’ B
Yo b Ky =0 onz =0 5> 5 ®

A
oxr

2
where K=—wg—, and g is the acceleration of gravity. When w is very large, the boundary condition becomes

B
¢’ =0 onz=0, y>5, (1o

In the case of vertical oscillation of G the boundary
condition (10) is satisfied by supposing that the double
section GG’ oscillates as a single rigid form, so that

the boundary condition on GG’ becomes

op’ ox

“on T Thn an
where n is the direction of the outward normal to
GG’
Furthermore,
P . K. 4
an ~ @ O9n @

where s denotes the length along the boundary.
Hence, we get the following relation,
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We may therefore take the boundary condition,
dpf =— dy or ¢’ =—y, (13)
along the polygonal boundary. And it will be recalled that this same condition is satisfied by imposing a
uniform flow along the positive x axis as appearing in Eq. (7). The infinity condition may therefore be
taken as the fluid to have a uniform flow at infinity with vanishing of disturbances,
Kinetic Energy of Fluid

The kinetic energy T of a fluid at rest at infinity is given by

1 99
T =-— o pgga “an das

or
T = L {yay (19)

where dS denotes an elementary area, p is the mass density of the fluid, and the integral extends over all the
boundaries of the fluid.

Since ¢’==0 on the free surface for the vertical oscillations when w is very large, the kinetic energy integral
vanishes over this boundary. Therefore the kinetic energy of the fluid below the free surface is half of that

obtained when a submerged whole polygonal cylinder GG’ move vertically.

Added Mass
The added mass of the vibrating polygonal cylinder is then given by
, 2T '

m' = —pr,
where U is the corresponding intantaneous velocity.
U =1,
m' = 2T, (15)
For a prismatic body, whose cross section is a semi-ellipse, the added mass per unit length is given by

nl’ = ‘;; ﬂlob[z! (16)

where b designates half-breadth at waterline.

For other forms it may be written in the form

1
m! ==y ) mpb?, an
using k; as the added mass coefficient,
From (15) and (17), we get
E 2T as)
2 = T
14 18
Zn‘pb
or
5 - 16T
2 T TnpB? ae

where B designates full-breadth at waterline.
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Added Mass for Straight Framed Section

Straight Framed Sections with Raked Side

In the case of a two dimensional cylinder with the general straight-framed section and a single chine (Fig. 3),

8 ——

the flow around its section may be obtained from equation () with

0.’120’5:-‘57?, a2=a4=7.~r -
a3=[5—2(ﬂ+7):|ﬂ T rk
and H
‘ =
pr=—1, 2 ==k 93 =0, ¢a =k, ps =1 . N
/.U‘
Fig. 3 Straight-framed section
with raked side
z-plane w-plane

FLOW DIRECTION
e

pr __r\.r\_.__l‘\___.n.m__?;

o <1 -k 0 k |

(a) (b)

Fig. 4 Mapping of straight-framed section with raked side

Hence the transformation corresponding to the present problem becomes

.“1% — (w? — 1)51 (w? — fR)T-1 gre-Fin (20)
or

Y =j(w2 — 1)F (w? — B2V w2 w4 const., (1)
where

1 = 3

Lss<y 1<r<d

We are only interested in evaluating the intergral (21) along the boundaries of the section. For this, ¢=0

and we have

= rei? = f(so’ — 1)1 (g — BTl @208 dy 4 const., (22)

where » and @ are polar coordinates.

Let 7+ and 7y be the lengths of the sides of the polygon corresponding to (=0, ¢=4) and (p=% ¢=1)
respectively.
Then, we have
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A B~ LA S .
O e D CE W ISPOMIES (23)
O<ep<E<CD
n=ln-mul =S1 (1 — @BF (g — B 203D dp €2y

O<kE<e <D

Where 2o, 2x and £, are the values of z corresponding to the points at ¢=0,% and 1 respectively.

The integral of (23) is approximated as follows by employing the hypergeometric function (see Appendix A)
P P p pp

R A RO G R

. i /R
™= 5 & ra-g4= r (—%— — B+ ") &
O< k< 1) (25)

Similarly (24) becomes (see Appendix B)

"y (1~k2)w—11‘(/5—3(? %) = T+ nl (26)
O<E<D
If we denocte B and H as the full beam and draft of the section respectively, then we get
b= rsin(Z— §4+7nx -+ rsin (L~ Br ¢
Ho=rcos(2 — B F1)n +rcos (1 ~ B)r (28)

with b = B/2,
And the area of the section becomes
A=rcos(2 ~7+ Brsin(2 -7+ =
+ rysin(l ~ B)mw [2recos (2 — T + By + nycos (1 — B)n) (29)

The kinetic energy of the entrained water per unit lenth of cylinder is given by
" b
2T = 2,050 (¢ — ) dy

= 2[ " par — [ 2a] 30)

from (13) and (14).

And y increment of the side r+ and r; of the section are expressed by
dy = drasin (2 — 8 1 D=
and dy = drysin (1 — B)n,

respectively,

Hence, (30) becomes

ML

2T = 2p[sin(2 — B+ 1 | (1 — D20k ~ g1yt po-tndy
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T sin(l = fe [ — 1 (gt — gyt g gy — 4] (1)

by virtue of equations (23} and (24).
Integrals involved in the equation (81) may be evaluated by the same approximation as employed in equations
(23) and (24).

Then we have

27 = p [0 sin = iy 2 A ST K

- +1-1 gin (1— ') - T'(g+n) (1—&)n
+ (1= k) 27 sin (1 ﬁ)”l’(ﬁﬂ—T 2) 4 )—’ i 4n—1)(B+T4+n—2)  al A] G2

Therefore the added mass coefficient %, for the vertical oscillation will be reduced to

.8 - rg & e ,BH’ -1) k-
ky x B2 [k“z Psin(2 — ﬁﬂr)ﬂf(l ~B) % )““‘ —f+a)(1—B+n) nf

— + Iy =y I'(g +m) (A=) _
+(1 — B sin(1~ ﬂ)nl‘(ﬁﬁ-?’ —2) 4= (Btr+a=1)(g+7+n—2)  aul A} (33)

Straight-framed Section with Vertical Side
When aj is 7 instead of (5—2(8+7)Jx in the preceding section

i.e. in the case of the wall sided profile, we have

B+ 71 =2

In this case the denominator of the second term in the bracket of

the equation (32) heoomes zero, therefore we must analyze seapra-

tely from the preceding section as a special case. Fig. 5 Straight-framed section
with vertical side

z-plane w-plane

o

7 W o W DUV - WV - WS
-k O kI
(a) (b}

Fig. 6 Mapping of straight-framed section with vertical side
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) 9
The flow arcund such a section may be obtained by the following transformation

dz

AT (= 1)EL (g — p)-
i (w 1)1 (w k)-8 (34)
where % < <1
Therefore we have
13
R W R GO )
1
f a—pnr (o — 1 gy (36)
These integrals are performed by the same approximation as in equations (23) and (24), but thev are easily
obtained by substituting ¥ by 2—8 in the equations (25) and (26). Thus it follows that
3 I' (1—B+n) I'({-5+n )
R o il e €0
r <—~—ﬂ F?l) n
1
(g n) I'(g+m)
= ol (o (2_-_,W,,<1 k2)~ .
no=lea-mre-p 5o 38)
where 0 < # < 1, and
b = rysin (1 — B,
H=r + ricos (1 - B,
A = bGw + H).
The kinetic energy of the entrained water is given by
2T = 20 [sin (1—8) xjglw dry — %—]
1
= o (2sin (A-pa [, (1= gDr1Get = 1) -sdp—4), (39)
since dy is zero along the parallel side to the flow.
Let
1
1 =jk (1 = @i (2 — £)1* dg. (40)

This integral may be rcduced to

I=21a-# B¢ 2-p

Hence by virtue of the property of Gamma function, we obtain

- 31 - B~ pHy

B)sin g gz

Then (39) becomes

2T = p (1 — U ~ Br — A)
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=020 - A - Pz — Blne + H)J (42)

Therefore added mas coefficient &, for vertical oscillation in this case is given by
b= o A=) A~p - G+ H) “3)

Designate sectional area coefficient by o. Then

1
o = T (1 -+ ~-;_Ik—~) (44)
1t follows that
h= o - B~ p - a )
where A= *%

Numerical Results and Discussion

Straight Framed Section with Vertical Side
This class of problems belongs to two parameter family, containing parameters & and A. For numerical

results, values of r4, r1, B, H, B/H, A, o, k, were calculated by computer for the following % values, and 3
values, taken in turn for each 2.

k: 0.10, 0.20, 0.30, 0.40, 0.45, 0.50, 0.55, 0.60, 0.70, 0.80, 0.90, 0.93, 0.95, 0.98
f: 0.50, 0.55, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95.

The results of the computation are plotted in Fig. 7 and Fig 8. The values of added mass coefficient %, with
parameter 8 on the base of B/H are plotted in Fig. 7 and k, on the base of § with parameter B/H are plotted
in Fig. 8.

The upper limit of B/H for constant 3 corresponds to triangular section with same 8. Therefore curves of
k, for the general sections must be within the two limits given by those of rectangular and triangular sections.
When J equals to 0.5, the section corresponds to the rectangle. The calculated values of & for 8=0.5 from
equation (45) coincide well with those of Lewis formula for rectangular section (1] as can be seen.

If B/H and 8 are chosen, the sectional area coefficient is predetermined.

Thus

g =1 — 11}_ tan (8 — 0.5)7. (46)

This equation shows that the relation between o and B/H(=1/2) is linear with constant parameter 8 in two
parameter family of straight-framed sections.

The curves of k, on the base ¢ with parameter g are plotted in Fig. 10 and the same curve with parametter
B/H are plotted in Fig. 11.

From Fig. 7 and Fig. 9 it is clear that the values of the added mass coefficient %, increase if the values of

B decrease.

Straight-framed Section with Raked Side
This class of problems belongs to three parameter family, containing parameter %, g and 7. For numerical
results, values of the same geometrical and physical quantities as in the preceding section were calculated for

the following #, 8 and r values. For each combination of % and 8 an appropriate value of 7 satisfying
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Fig. 9 Section shapes and added mass coefficients
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the relation 1.5 < 8-+7 <2 were taken.

k: 0.10, 0.20, 0.30, 0.40, 0.45, 0.50, 0.35, 0.60, 0.70, 0.80, 0.90
B: 0.50, 0.55, 0.60, 0.65, (.70, 0.75, 0.80, 0.85, 0.90
7: appropriate values between 1,05 and 1.45 satisfying the relation 1.5 < 8-+7 < 2 for each § value above.

The results of the computation are plotted in Fig. 12 and Fig. 13. Figure 12 shows the values of %, with

parameters 8 and 7 on the base of B/H, and Fig. 13 shows the values of Ry on the base of ¢ with parameters
B and B/H.

The whole points lie between those of rectanglular and triangular section in Fig. 14,

It is chvious that the luwer limit of B/H for constant g8 and 7 corresponds to the triangular section with a

bottom angle (fr) taking 7 value.
If B/H, g and 7 are chosen, the sectional area coefficient ¢ is predetermined.

a/ne | /H=2 B/H =3
)
A X %‘0' ©
o v ,\é\ v/of 3 7
/o © < &/l 3 -
& e Y S
/
LR L51 1.42
Bs/e. S
Lo ©
. .g'b?'
1.018
.998
x
1.325
B/H =6
y 7/
222 /7
L/
.06/ /7
1,00
.91
.30

Fig. 15 Section shepes and added mass coefficient (8 = 0.60)
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It is seen from above equation that the contours of constant g andr induce the hyperbolic relation between
o and B/H(=1/2) in three parameter family of straight-framed section. The curves of %, on the base of
parsmeter 2 at constant g value of 0.60, for example, are plotted in Fig. 14.

Several sections and corresponding added mass coefficients k4, when 8 = 0.6 are shown in Fig. 15 to show
the effect of 7 values. From Fig. 12 and Fig. 15 it is seen that the values of added mass coefficient &, at
contant § values, increase with the 7 values in considerable range of beam draft ratio and decrease while 7
increase comparatively from certain high beam draft ratios. It is interesting to note that the every &, curve in Fig.

12 shows that its values are closer to that of trianglular section and are far from that of rectangular section.

Comparison of Straight-framed Section and Lewis Form.

It is seen from the results of computation in the preceding sections that in straight-framed section the chine
angles are also basic parameters having marked effects on added mass coefficients as well as beam-dralt ratio
and sectional area coefficient. Thus the comparison between straight-framed sections and Lewis forms on added
mass coefficient is of little merit if it is done only at the same beam-draft ratio and sectional area coefficient,

neglecting the chine angles.

2.0

_emm CHINE FORM

_ ——— LEWIS FORM %
1.5 ' il

0. L L
0.5 06’ 07 - 0.8 0.9 1.0

—

Fig. 16 The comparison of straight-framed sections with vertical side
and Lewis forms on added mass coefficients
For the two parameter family of straight-framed section, however, angle 8 is predetermined if beam-draft ratio
and sectional area coefficient are chosen. Therefore, for this class of straight-framed sections it is clear that
the comparison of the straight-framed section and Lewis form is possible provided ¢ and B/H are used as basic
parameters.
For B/H = 2 (2 = 0.5) and 3.33 (1 = 0.3}, for examples, the straight-framed sections of vertical side give

greater values of added mass coefficient than those of Lewis form in almost entire region of sectional area
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cooffizients. The maximum diffcrence of about 20 percent over Lewis form are attained near the sectional area
coclfiziant 0.8 and it is maintained in the considerably broad band as shown in Fig. 16.

The differences decrease as o values approach to the rectangles (¢ = 1) or triangles (¢ = 0.5).

1.3 ' .

12— / ‘
—— CHINE FORM / /i

. = LEWIS FORM oL/

Q6

0.5 0.6 0.7 0.8 0.9 1.0

Fig. 17 The comparison of straight-framed sections with raked side (3=0.60) and Lewis
froms on added mass coefficients

Hwang and Kim [11] have shown, from their computation on added mass coefficients for twelve typical stra-
ight-framed sections having vertical side and flat bottom and covering four groups of chine angles, that the added
mass coefficient of those sections had considerably higher values than those of Lewis forms having same sectional
area coefficients and beam draft ratios and that the increments ranged from 3% to 309% in whole being
significantly controlled by the chine angle as stated at the early part of this paper.

Nevertheless, from the results of systematic computation on the straight-framed section with raked side and
bottom, as examplified for the constant angle 8 of 0.60, added mass coefficients associated with vertical oscillation
at high frequency give greater value than those of Lewis forms beyond the range of ¢ = 0.63 for B/H = 3.33%
(2 = 0.3) and beyond the range of over ¢ = 0.73 for B/H = 2.0(1 = 0.5) as shown in Fig. 17. And it
is interesting to note that the straight-framed sections for § = 0.60 give smaller added mass coefficients than
those of Lewis forms at those ¢ values smaller than 0.63 for B/H = 3.33 and o values smaller than (.73 for

B/H = 2.0. It appears that these results are mainly dependent upon the slope of the sides of the section.

Summary and Conclusion

The foregoing analyses have demonstrated a general technique of employing Schwartz-Christoffel transformation
for the added mass calculation of two-dimensional cylinders with straight-framed sections and chines oscillating
vertically in the free surface of an ideal fluid at high frequencies.

Specifically, two and three parameter families, including sections found in practical chine ship forms such
as with raked sides and deadrise bottoms, were analyzed and the results were found to be well within the
expected range of values compared to Lewis forms and other previous works.

The study shows that the parameter controlling chine angle is a significant one as are other parameters such

as beam draft ratios and sectional area coefficients. It is significant to note that the method such as employed
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here raises no difficulty with regard to raked sides and deadrise, and thus such effects may he studied further
in detail by employing this technique.

Tn real flow, due to the sprays on the sides and eddies at the knuckles, if any, certain differences in added
mass coefficients are expected. And the effect of frequencies of oscillation is of interest in practical application.
An experimental study, therefore, to complement the above would show further interesting results, and such is

recommended,
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APPENDIX A
Evalution of Integral (23)
j‘:(l — NI — p?)T-1p8-241) dp (23)
Let (p/F)% = t, then (23) becomes
1 1 S - _
PN zﬁj FATBR(L — T (] — ROE-10 (48)
2 i
In evaluating the above integral we employ the following relation {12)
. 1
e, b ;) =gty 1 #10 = e — e 49
[ Re(e) > Re(d) >0, 12I<1 ]
Then (28) will be reduced to
) r(y -s57 1o s s
e = -2—}«3'“ TE (1 — B, g T AT s 2y, (50)
ris - p)
since |4 < 1and, ——ﬁ>‘)——ﬁ+?’>0
Hypergeometrical function 2Fy(a, b; c; x)is also expressed as follows,
I'(c) {'—1 FECEEE 71‘)7[117‘ + n) ozt
2Fi(a, b; ¢; 2) = Ty T 5= 1'(c + n) ] GD
Then (zj<<)
Pl =B, 5 — B F T 5~ i k)
I'<%— ) - 1(1“,5*‘71)[1( - B+ +"> b2n
=T . - 6D
a-8 K.—-,efr) z~ﬂ+n>
(1k]<C1)
From (49) and (51) we have
- F(l—ﬁ+n)F——;n+T+n .
n= L ro — ( ) F sy
Iy — 3y 5= ( — B \ n!

Since |k|<(1 in the present problem, the series appeared in the right side of (25) converges. It is noted
that L <8<, 1<r<:§_ and 5 <p o+ 1< 2

The integral appeared in the first term of equation (31) may be readily evaluated similarly.
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APPENDIX B
Evaluation of Integral (24)

n= {0 = et o - By e g

(24)
O<E<ep <D
Let (9 — #)/(1 — #2) = ¢, then (24) becomes
n=ta - e fla - e s a - BT (53)

Since k| < 1 and the above integra! does not seem to be approximated to any convergent series as the
previous one we condesider a new transformation of variable, say

Then (53) becomes

no= = e [ - e~ ~ R

By the same technique applied in equation (23) we have

W TB+T— 2+ BN [
_1 AN IES rm S 2 (a=F
1= 2 a Hh r's r 3) # %0 ' +7+n) n! (26)

Since |#] < 1, there follows 0 < 1 — # < land 8 + 7> 8> 0, the series in (26) converges. The
integral appearing in the second term of equation (31) may be evaluated by the same method.



