It is well known that for a sequence a = ($a_0,\;a_1$,...) the general term of the dual sequence of a is $a_n\;=\;c_0\;^n_0\;+\;c_1\;^n_1\;+\;...\;+\;c_n\;^n_n$, where c = ($c_0,...c_n$ is the dual sequence of a. In this paper, we find the general term of the sequence ($c_0,\;c_1$,... ) and give another method for finding the inverse matrix of the Pascal matrix. And we find a simple proof of the fact that if the general term of a sequence a = ($a_0,\;a_1$,... ) is a polynomial of degree p in n, then ${\Delta}^{p+1}a\;=\;0$.
A matrix $P{\in}\mathbb{C}^{n{\times}n}$ is called a generalized reflection matrix if $P^*$ = P and $P^2$ = I. An $n{\times}n$ complex matrix A is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix P if A = PAP (A = -PAP). It is well-known that the reflexive and anti-reflexive matrices with respect to the generalized reflection matrix P have many special properties and widely used in engineering and scientific computations. In this paper, we give new necessary and sufficient conditions for the existence of the reflexive (anti-reflexive) solutions to the linear matrix equation AXB + CY D = E and derive representation of the general reflexive (anti-reflexive) solutions to this matrix equation. By using the obtained results, we investigate the reflexive (anti-reflexive) solutions of some special cases of this matrix equation.
Fundamentals of electrodynamics of moving sources with constant velocity in an anisotripic plasma when the do magnetic field and the relative motion are oriented in arbitrary directions are presented. The well-known Minkowski's relations are generalized to accomodate anisotropic and dispersive media, and relativistic transformation formulae of constitutive parameters are derived and expanded into polynomials of the speed ratio \ulcornerto increase the utility of the formulae. The helmholtz wave equation of electromagnetic fields is generalized to the media charactrized by tensor parameters, and is solved in operator form. Also the solution of wave equation is expressed as a porcuct of the inverse of the wave operator matrix and the source function vector, and the inverse of the wave operator matrix is presented in an explicit form. The equations and formulae derived in this paper are all general, and can be reduced to known and proven results upon imposing the restriction called for by specific situations.
In this article, an alternating Fibonacci sequence is defined from a second-order linear homogeneous recurrence relation with constant coefficients. Then, the determinant, inverse, and eigenvalues of the circulant matrices with entries in the first row having the formation of the sequence are formulated explicitly in a simple way. In this study, the method for deriving the formulation of the determinant and inverse is simply using traditional elementary row or column operations. For the eigenvalues, the known formulation from the case of general circulant matrices is simplified by considering the specialty of the sequence and using cyclic group properties. We also propose algorithms for the formulation to show how efficient the computations are.
The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.
본 논문은 변위제약모드를 갖는 트러스구조물의 형태해석을 목적으로 하였으며, 이를 위하여 해의 존재조건과 무어-펜로즈(Moore-Penrose) 일반역행렬을 이용하였다. 또한, 수치해석과정에서의 변위제약모드로는 호몰로지변형(homologous deformation)을 고려하여 해석하였고, 다음으로 다양한 변위제약모드와 절점에 작용하는 하중비를 만족하는 구조물의 형태를 구하였다. 본 논문에서의 형태해석문제는 지정된 변위를 만족하는 구조물의 형태를 찾는 일종의 역문제(inverse problem)로서 일반적인 구조해석과정과는 반대되는 입장에서 접근하였다. 또한, 본 논문에서는 수치해석과정에서 근사해의 정도를 향상시키기 위하여 뉴튼-랩슨법을 사용하였고, 수치해석예제로서 부재의 배열형태에 따라 3가지모델을 선택하였으며, 이들 모델을 통하여 적용한 해석기법의 정확성과 효율성을 검증하였다.
본 논문에서는 Hadamard 변환이 Jacket 변환으로 일반화 될 수 있는 것처럼 Haar 변환을 Jacket-Haar 변환으로 일반화 한다. Jacket-Haar 변환의 원소는 0 과 ${\pm}2^k$ 이다. original Haar 변환과 비교해서 Jacket-Haar 변환의 베이시스(basis)는 신호처리에 보다 적합하다. 응용으로 $2{\times}2$ Hadamard 행렬을 기반으로 한 DCT-II(discrete cosine transform-II)와 $2{\times}2$ Haar 행렬을 기반으로 한 HWT(Haar Wavelete transform)를 제시하고 이들의 성능을 분석하며 Lenna 이미지의 시뮬레이션을 통해 성능을 평가하였다.
A method using the linear matrix algebra is developed in order to determine unknown external forces in linear structural analyses. The method defines a matrix which represents the linearity of the vibrational analysis for a structural system. The unknown external forces are determined by the operations of the matrix. The method is applied to find an engine motion in an automobile system. For a simulation process, an exhaust system is modeled and analyzed by the finite element method. The validity of the simulation is verified by comparing with the experimental results the free vibration. Also, an experiment on the forced vibration is performed to determine the damping ratio of the exhaust sysetm. Estimated model parameters(natural frequency, mode shape) are in accord with the experimental results. Because the method merely repeats the transpose and inverse operations of a matrix, the solution is extremely easy and simple. Moreover, it is more accurate than the existing methods in that there is no artificial assumptions in the calculation processes. Therefore, the method is found to be reliable for the analysis of the exhaust system considering the characteristics of vibrations. Although the suggested method is tested by only the exhaust system here, it can be applied to general structures.
To determine the modal matrix and modal frequency of engine mount system, we most solve so-called eigen-value problem. However eigen-value problem of engine mount system with hydraulic mount can not be solved by general eigne-analysis algorithm because the properties of hydraulic mount vary with frequency. so in this paper the method for modal analysis of rigid body motions of an engine supported by hydraulic mount is proposed. Natural frequencies and mode shapes of this nonlinear system are obtained by using complex exponential method and Laplace transformation method. In time domain, impulse response functions are calculated by (two-sided) discrete inverse Fourier Transformation of forced frequency response functions achieved by Laplace transformation of the differential equation of motion. Considering the fact that frequency response functions synthesized by modal parameters form proposed method are in good agreement with original FRFs, it is proved that the proposed method is very efficient and useful for the analysis of eigne-value problem of hydraulic engine mount system.
The reduction of efficiency of missing observations on complete diallel cross designs are examined. we studies robustness of optimal block designs for estimating general combining ability against loss of missing observations in diallel cross. A-efficiencies suggest that these designs are fairly robust. Simple g-inverses may be found for the information matrices of the line effects which allow evaluation of expressions for the variances of the differences between the pairs of line effects with missing observations. we numerically calculate the reduction of efficiency for estimating general combining ability against loss of missing observations in diallel cross.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.