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SIMPLE FORMULATIONS ON CIRCULANT MATRICES

WITH ALTERNATING FIBONACCI

Sugi Guritman

Abstract. In this article, an alternating Fibonacci sequence is defined

from a second-order linear homogeneous recurrence relation with constant
coefficients. Then, the determinant, inverse, and eigenvalues of the cir-

culant matrices with entries in the first row having the formation of the
sequence are formulated explicitly in a simple way. In this study, the

method for deriving the formulation of the determinant and inverse is

simply using traditional elementary row or column operations. For the
eigenvalues, the known formulation from the case of general circulant ma-

trices is simplified by considering the specialty of the sequence and using

cyclic group properties. We also propose algorithms for the formulation
to show how efficient the computations are.

1. Introduction

Circulant matrices have a wide range of applications in many areas of math-
ematical problems: numerical analysis, linear differential equations, operator
theory, lightweight cryptography, and many others; hence also connected to
computer science and engineering. All of those take advantage of the nice
structure of the circulant matrix that the calculation of eigenvalues, eigenvec-
tors, determinants, and inverse of the matrices can be formulated explicitly and
computed efficiently.

So many papers recently studied the above problems with various specializa-
tions. Without intending to exclude any other articles whose similar topics to
the topic of this paper but missed from our consideration, in the following we
refer to some of those. Bueno [4] formulated the determinants and inverse of
circulant matrices with geometric progression. Shen et al. [18] gave conditions
for the invertibility of circulant matrices with special entries of the Fibonacci
number and the Lucas number, the formulations of the determinant, and in-
verse of these kinds of matrices are derived as well. Jiang et al. [9] generalized
those works by defining circulant matrices with the k-Fibonacci and k-Lucas
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numbers. With a similar problem, Jiang and Li [11] continued those results
by applying to the left circulant and G-circulant matrices. In the same year,
the explicit determinants of circulant and left circulant matrices involving Tri-
bonacci numbers or generalized Lucas numbers have been investigated by Li et
al. see in [13].

Further study about the explicit inverse matrices continued but now of en-
tries Tribonacci and the matrix structure is skew circulant, performed by Jiang
and Hong in [10]. Besides, a computational approach using a symbolic algo-
rithm for computing the inverse and determinant of general bordered tridiago-
nal matrices is presented by Jia and Li in [8]. Then, Radicic [16] followed the
study of k-circulant matrices with geometric sequence, while Bozkurt and Tam
[3] were interested in r-circulant matrices associated with a number sequence.
Most recently, similar problems can be seen in [2, 5, 14,15,17,19].

Inspired by all the above beautiful references, in this article, an alternating
Fibonacci sequence is defined from a second-order linear homogenous recur-
rence relation with constant coefficients. Then, the determinant, inverse, and
eigenvalues of circulant matrices with entries in the first-row having formation
of that sequence are formulated explicitly in a much simpler way than in the
formulation for the general case. In this study, the method for determining the
determinant and the inverse of the formulation is simply based on an elemen-
tary row or column operations to get a simpler equivalent matrix. Note that
this kind of method is different from all the above methods in the references.
For the eigenvalues, the previous formulation from the case of general circulant
matrices is simplified by considering the specialty of the alternating Fibonacci
sequence and using cyclic group properties. Below is the outline of this article.

In Section 2, we review the general circulant matrix notion and the previous
results associated with its eigenvalues, determinant, and inverse; also defining
the alternating Fibonacci sequence and associated with the definition of its
circulant matrix. In Section 3 we propose a theorem containing a simple for-
mulation of the determinant and inverse of the matrix as defined in Section 2.
Section 4 presents a theorem with its proof containing a simplified formulation
for the eigenvalues of the matrix. We also present algorithms of those results
to show how efficient the computations are, and we close the paper with a
concluding remark, described in Sections 5 and 6, respectively.

2. Circulant matrix with alternating Fibonacci numbers

The first subsection of this section talks about the notion of the general
circulant matrix and the previous results associated with the formulation of
the eigenvalues, determinants, and inverse. For the last subsection, the alter-
nating Fibonacci sequence is defined from a second-order linear homogenous
recurrence relation with constant coefficients, and some of its properties are
derived.
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2.1. General circulant matrix

For a sequence of numbers c0, c1, . . . , cn−2, cn−1, the n× n circulant matrix,
with the usual notation from the references, is defined as

Ci rc (c0, c1, . . . , cn−2, cn−1) =



c0 c1 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−2

cn−2
. . .

. . .
. . .

...
... · · · cn−1 c0 c1
c1 a2 · · · cn−1 c0

 .

Let C be the Ci rc (c0, c1, . . . , cn−2, cn−1), λk be the eigenvalues, and uk be
the corresponding eigenvectors of C for k = 0, 1, 2, . . . , n− 1. Then, λk and uk

are well-known formulated (see for examples in [6] and [1]) as

(2.1) λk =

n−1∑
j=0

cjω
jk and uk =

(
1, ωk, ω2k, . . . , ω(n−2)k, ω(n−1)k

)
,

where ω = e
2π
n = cos 2π

n + i sin 2π
n and i =

√
−1. In fact, the set S ={

1, ω, ω2, . . . , ωn−1
}

is a cyclic subgroup in the multiplication group C∗ =
C ∖ {0}, ω is one of the generators of S, and all the elements in S are nth
roots of unity over C which mean as the solutions of xn − 1 = 0. Besides, that
Equation (2.1) can also be written as

(2.2)


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω(n−1)2 · · · ω(n−1)(n−1)




c0
c1
c2
...

cn−1

 =


λ0

λ1

λ2

...
λn−1

 .

These notions will be used in the last section.
Direct consequences of Equation (2.1) is the formulation:

(2.3) det (C) =
∏n−1

k=0

n−1∑
j=0

cjω
jk and C−1 = Ci rc (u0, u1, . . . , un−2, un−1) ,

where uj = 1
n

∑n−1
k=0 λkω

−jk for j = 0, 1, . . . , n − 1. When n is getting larger,
those determinant and inverse formulas are computationally not very efficient
to be implemented, especially because of involving the complex number arith-
metics even though the entries of the matrix are real numbers. However, if
the sequence of c0, c1, . . . , cn−2, cn−1 has a nice formation or structure, such as
coming from recurrence relation, then there is a possibility to simplify to get
more explicit forms of the eigenvalues, determinant, and inverse of C. These
kinds of studies become more interesting research topics over last decades which
mostly focus on the determinant and inverse. Thus, one of the main results of
this paper is also observing simplification of the eigenvalues formula. Also, in
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this time we use new special formation of c0, c1, . . . , cn−2, cn−1 that call it as
alternating Fibonacci numbers (sequence).

2.2. Alternating Fibonacci numbers

The basic theory of this subsection can be seen in [7]. When a second-
order linear homogenous recurrence relation with constant coefficients is defined
recursively as

an + an−1 − an−2 = 0, n ≥ 2, with initial condition a0 = 0, a1 = 1,

then it will get a sequence on the form: 0, 1,−1, 2,−3, 5,−8, 13,−21, 34, . . .
which is in the subsequent of this paper called as alternating Fibonacci sequence.
It is easy to derive that the solution of the recurrence relation is the explicit

formula of the nth term an =
(−1)n[(1−

√
5)

n−(1+
√
5)

n
]

2n
√
5

.

The relationship between the sequence {an}∞n=1 and the Fibonacci sequence
{fn}∞n=1 is simply

an = (−1)n−1
fn or fn = (−1)n−1

an.

The following proposition will be used later and can be proved by induction.

Proposition 1. For any positive integer n, sum of the first (n+ 1) terms in
the alternating Finonacci sequence is formulated as An =

∑n
i=0 ai = 1− an−1

and sum of the first (n+ 1) terms in the Finonacci sequence is formulated as
Fn =

∑n
i=0 fi = fn+2 − 1.

We close this section by defining the matrix that will become the main object
of this topic in this paper.

Definition 1. For any integer n ≥ 2, the n×n circulant matrix with entry the
alternating Finonacci sequence {ai}ni=1 is the matrix Ci rc(a1, a2, a3, . . . , an−1,
an).

3. Determinant and inverse formulation

In this section, for the basic theory, we refer to [12] especially for the proof
of the following theorem.

Theorem 1. For integer n ≥ 3, let A = Ci rc (a1, a2, . . . , an−1, an) be the
matrix defined in Definition 1 and let x = 1 + an − an−1. Then

det (A) = xn−1 +

n−2∑
j=0

an−1−ja
j
nx

n−2−j.

If δ = det (A) ̸= 0, then A−1 = 1
δ Ci rc (e1, e2, e3, e4, . . . , en−1, en), where

e1 =
δ − an−2

n

x
, e2 =

δ − xn−2

an
, ej = −xn−jaj−3

n for j = 3, 4, . . . , n.
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Proof. The proof of this theorem is described step by step in 6 steps as follows.
(1) Applying E1 as a series of elementary row operations on A: by sub-

stituting the ith row with the resulting operation of the ith row is added to
the (i+ 1)th row and subtracted by the (i+ 1)th row, for i = 2, 3, . . . , n − 2;
then, by substituting the (n− 1)th row with the (n− 1)th row is added to the
nth row and subtracted by the first row; the last is by substituting the nth
row with the first row is added to the nth row. The result is A ∼ D1, that is
D1 = E1 (A) having entry structure

D1 =



1 −1 2 −3 · · · an−2 an−1 an
0 x −an 0 0 · · · 0 0
0 0 x −an 0 0 · · · 0

0 0 0 x −an 0
. . .

...
...

...
. . .

. . .
. . .

. . .
. . . 0

0 0 · · · 0 0 x −an 0
0 0 0 · · · 0 0 x −an
0 1 −1 2 · · · an−3 an−2 x+ an−1


,

x = 1 + an − an−1 ⇔ 1 + an = x+ an−1.(3.1)

Then, there exists the matrix L1 = E1 (In) such that D1 = L1A, where

L1 =



1 0 0 · · · 0 0 0 0
0 1 1 −1 · · · 0 0 0
0 0 1 1 −1 · · · 0 0
0 0 0 1 1 −1 · · · 0
...

...
...

. . .
. . .

. . .
. . .

...
0 0 0 · · · 0 1 1 −1
−1 0 0 0 · · · 0 1 1
1 0 0 0 0 · · · 0 1


.

(2) Applying K1 as a series of elementary column operations on D1 by
substituting the jth column with the jth column is added to the result oper-
ation of the first column multiplied by (−aj) for j = 2, 3, . . . , n. The result is
A ∼ D2 = K1 (D1), where

D2 =



1 0 0 0 · · · 0 0 0
0 x −an 0 0 · · · 0 0
0 0 x −an 0 0 · · · 0

0 0 0 x −an 0
. . .

...
...

...
. . .

. . .
. . .

. . .
. . . 0

0 0 · · · 0 0 x −an 0
0 0 0 · · · 0 0 x −an
0 a1 a2 a3 · · · an−3 an−2 x+ an−1


.
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Then, there exists the matrix R1 = K1 (In) such that D2 = L1AR1, where

R1 =



1 −a2 −a3 · · · −an−3 −an−2 −an−1 −an
0 1 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 0 · · · 0
...

...
...

. . .
. . .

. . .
. . .

...
0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 1 0
0 0 0 0 0 · · · 0 1


.

(3) Applying E2 as a series of elementary row operations on D2 by substi-
tuting the ith row with the ith row is multiplied by 1

x for i = 2, 3, . . . , n − 1.
The result is A ∼ D3 = E2 (D2), where

D3 =



1 0 0 0 · · · 0 0 0
0 1 q 0 0 · · · 0 0
0 0 1 q 0 0 · · · 0

0 0 0 1 q 0
. . .

...
...

...
. . .

. . .
. . .

. . .
. . . 0

0 0 · · · 0 0 1 q 0
0 0 0 · · · 0 0 1 q
0 a1 a2 a3 · · · an−3 an−2 x+ an−1


,

q =
−an
x
⇔ x =

−an
q

.(3.2)

Then, there exists the matrix L2 = E2 (L1) such that D3 = L2AR1, where

L2 =
1

x



x 0 0 · · · 0 0 0 0
0 1 1 −1 · · · 0 0 0
0 0 1 1 −1 · · · 0 0
0 0 0 1 1 −1 · · · 0
...

...
...

. . .
. . .

. . .
. . .

...
0 0 0 · · · 0 1 1 −1
−1 0 0 0 · · · 0 1 1
x 0 0 0 0 · · · 0 x


.

(4) Applying K2 as a series of elementary column operations on D3 by
substituting the (j + 1)th column with the jth column is multiplied by −q and
added to the (j + 1)th column for j = 2, 3, . . . , n− 1. The result is A ∼ D4 =
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K2 (D3), where

D4 =



1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 0 · · · 0
...

...
...

. . .
. . .

. . .
. . .

...
0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 1 0
0 u1 u2 u3 · · · un−3 un−2 d


.

In this case, u1 = a1 = 1, and for j = 2, 3, . . . , n− 2,

(3.3) uj = −quj−1 + aj ⇔ aj = quj−1 + uj ⇔ (aj − uj) = quj−1,

(3.4) d = −qun−2 + x+ an−1 = −qun−2 + an + 1 and det (A) = xn−2d.

Now, we will prove the formula of det (A) by formulating d. Consider Equation
(3.3). Then we have the sequence

u1 = 1, u2 = −qu1 + a2 = −qa1 + a2,

u3 = −q (−qa1 + a2) + a3 = a1 (−q)2 + a2 (−q) + a3,

u4 = a1 (−q)3 + a2 (−q)2 + a3 (−q) + a4,

...

un−2 =

n−2∑
j=1

aj (−q)n−2−j
and so that

det (A) = xn−2

x+ an−1 +

n−2∑
j=1

aj (−q)n−1−j

 .

Then, using Equation (3.2) and changing the counter variable,

det (A) = xn−1 +

n−2∑
j=0

an−1−ja
j
nx

n−j−2.

In this step, there exists R = K2 (R1) such that D4 = L2AR with

R =



1 v2 v3 · · · vn−2 vn−1 vn
0 1 −q (−q)2 · · · (−q)n−3

(−q)n−2

0 0 1 −q (−q)2 · · · (−q)n−3

...
...

. . .
. . .

. . .
. . .

...

0 0 · · · 0 1 −q (−q)2
0 0 0 · · · 0 1 −q
0 0 0 0 · · · 0 1


,
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where v2 = 1, and for j = 3, 4, . . . , n, vj = −qvj−1 − aj .
(5) Applying E3 as a series of elementary row operations on D4 by substi-

tuting the nth row with the ith row is multiplied by −ui and added to the nth
row, for i = 2, 3, . . . , n − 2. We have A ∼ D = E3 (D4) is a diagonal matrix

D =

(
In−1 O
O d

)
, and there exists L = E3 (L2) such that D = LAR and

L =
1

x



x 0 0 0 · · · 0 0 0
0 1 1 −1 0 · · · 0 0
0 0 1 1 −1 0 · · · 0

0 0 0 1 1 −1
. . .

...
...

...
...

. . .
. . .

. . .
. . . 0

0 0 0 · · · 0 1 1 −1
−1 0 0 0 · · · 0 1 1
z1 z2 z3 z4 · · · zn−2 zn−1 zn


, where

(3.5)
(
z1 z2 · · · zn

)
=
(
0 −u1 · · · −un−2 1

)
(xL2) .

For the purpose to formulate A−1, we will derive the formulation of zj , for
j = 1, 2, . . . , n. Based on Equations: (3.1), (3.2), (3.3), (3.4), and (3.5), notice
that

z1 = un−2 + x = un−2 +
−an
q

=
1− d

q
=

x (d− 1)

an
, z2 = −1,

z3 = −u1 − u2 = −1− (−q (1) + (−1)) = q = (−q) z2,(3.6)

z4 = u1 − u2 − u3 = −q2 = (−q) z3,
z5 = u2 − u3 − u4 = q3 = (−q) z4

and so on, by the initial value z2 = 1 for j = 3, 5, . . . , n− 1, we have

(3.7) zj = uj−3 − uj−2 − uj−1 = (−q) zj−1 = (−1)j−1
qj−2,

then we also obtain that zn = un−3 − un−2 + x⇔

(3.8) zn = −qzn−1 + d = (−1)n−1
qn−2 + d.

(6) From D = LAR in Step 5, then D−1 = (LAR)
−1 ⇔

(3.9) A−1 = RD−1L =



1 v2 v3 · · · vn−1
vn
d

0 1 −q (−q)2 · · · (−q)n−2

d

0 0 1 −q
. . . (−q)n−3

d
...

...
. . .

. . .
. . .

...
0 0 · · · 0 1 −q

d
0 0 0 · · · 0 1

d


L.
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Based on Equation (3.9), and since A−1 is also circulant (see Equation (2.3)),
we may write A−1 = 1

xd Ci rc (zn, z1, z2, z3, . . . , zn−2, zn−1). Since d = δ
xn−2 ,

then A−1 = xn−3

δ Ci rc (zn, z1, z2, z3, . . . , zn−2, zn−1). To simplify, we rewrite

A−1 =
1

δ
Ci rc (e1, e2, e3, e4, . . . , en−1, en) ,

where ej can be formulated based on the formulation of zj and substituting
back that q = −an

x . Consider Equations: (3.2), (3.6), (3.7), (3.8), (3.9) to get

e1 = znx
n−3 =

δ − (an)
n−2

x
,

e2 = z1x
n−3 =

xn−2 (d− 1)

an
=

δ − xn−2

an
,

e3 = xn−3z2 = −xn−3,

and for j = 4, 5, . . . , n, we have

ej = xn−3zj−1 = xn−3
(
(−1)j−2

qj−3
)
⇔ ej = −xn−jaj−3

n .
□

4. Eigenvalues formulation

Recall the cyclic group S =
{
1, ω, ω2, . . . , ωn−1

}
from Section 2. All n

elements of S geometrically occupy the unit circle in the complex plane and
divide the circle into n equal parts, then it is very clear from the definition of
S that for l = 1, 2, . . . ,

⌊
n
2

⌋
, we have

(4.1) ωl+ωn−l = ωl+ω−l = 2 cos (lθ) and ωl−ωn−l = ωl−ω−l = 2i sin (lθ) ,

where θ = 2π
n . These equations will be used as an important part in the proof

of the following theorem.

Theorem 2. For integer n ≥ 3, let A = Ci rc (a1, a2, . . . , an−1, an) be the
matrix defined in Definition 1 and for j = 0, 1, 2, . . . , n − 1, let λj be the
eigenvalues of A. If θ = 2π

n and m =
⌊
n−1
2

⌋
, then λ0 = 1 − an−1, and for

k = 1, 2, . . . ,m, we have λk = Rk + Cki and λn−k = λk, where

Rk = 1 +

m∑
s=1

(as+1 + an−s+1) cos (skθ) and

Ck =

m∑
s=1

(as+1 − an−s+1) sin (skθ) .

For the case of n is even, we also include λn
2
= an−1−2an−1 and Rk becomes

Rk = 1 + (−1)k an
2 +1 +

m∑
s=1

(as+1 + an−s+1) cos (skθ) .
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Proof. Based on Equation (2.2), in the context of matrix A here we have
1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ω−1 ω−2 · · · ω1−n




a1
a2
a3
...
an

 =


λ0

λ1

λ2

...
λn−1


and so by Proposition 1, it is clear that λ0 =

∑n
t=0 at = 1− an−1, and for the

case of n is even, it is also very simple that

λn
2
=

n∑
t=0

atω
n
2 t =

n∑
t=0

(−1)t at =
n∑

t=0

ft = fn+2 − 1 = fn−1 + 2fn − 1

= (−1)n−2
an−1 + (−1)n−1

2an − 1 = an−1 − 2an − 1.

Next, for k = 1, 2, . . . ,m =
⌊
n−1
2

⌋
, consider that

λk + λn−k =
n−1∑
t=0

at+1

(
ωtk + ωt(n−k)

)
= 2a1 +

n−1∑
t=1

at+1

(
ωtk + ω−tk

)
= 2 +

m∑
t=1

at+1

(
ωtk + ω−tk

)
+

n−1∑
t=n−m

at+1

(
ωtk + ω−tk

)
but for the case of n is even,

λk+λn−k = 2+

m∑
t=1

at+1

(
ωtk + ω−tk

)
+

n−1∑
t=n−m

at+1

(
ωtk + ω−tk

)
+2 (−1)k an

2 +1.

Transforming the counter variable: s = t when t = 1, . . . ,m and s = n−t when
t = n−m, . . . , n− 1, we have

λk + λn−k = 2 +

m∑
s=1

as+1

(
ωsk + ω−sk

)
+

m∑
s=1

an−s+1

(
ω(n−s)k + ω−(n−s)k

)
= 2 +

m∑
s=1

(as+1 + an−s+1)
(
ωsk + ω−sk

)
and for the case of n is even,

λk + λn−k = 2 + 2 (−1)k an
2 +1 +

m∑
s=1

(as+1 + an−s+1)
(
ωsk + ω−sk

)
.

By applying Equation (4.1), now we have

(i) λk + λn−k = 2

(
1 +

m∑
s=1

(as+1 + an−s+1) cos (skθ)

)
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and when n is even,

(ii) λk + λn−k = 2

(
1 + (−1)k an

2 +1 +

m∑
s=1

(as+1 + an−s+1) cos (skθ)

)
.

Analogously, consider that

λk − λn−k =

n−1∑
t=0

at+1

(
ωtk − ωt(n−k)

)
=

n−1∑
t=1

at+1

(
ωtk − ω−tk

)
=

m∑
s=1

(as+1 − an−s+1)
(
ωsk − ω−sk

)
,

and applying Equation (4.1) to get

(iii) λk − λn−k = 2i

m∑
s=1

(as+1 − an−s+1) sin (skθ) .

Finally, by adding and subtracting Equations: (i) with (iii), and when n is
even: (ii) with (iii), we have λk = Rk + iCk and λn−k = Rk − iCk, where

Rk = 1 +

m∑
s=1

(as+1 + an−s+1) cos (skθ) and

Ck =

m∑
s=1

(as+1 − an−s+1) sin (skθ)

and for the case of n is even, Rk becomes

Rk = 1 + (−1)k an
2 +1 +

m∑
s=1

(as+1 + an−s+1) cos (skθ) .
□

5. Computation remark

In this subsection, we present a simple illustration to figure out how to apply
the formulations to compute the determinant and inverse based on Theorem 1
and the eigenvalues based on Theorem 2. Then, by considering that illustration,
we could construct efficient algorithms.

Example 1 (Simple illustration). For n = 5, we haveA = Ci rc (1,−1, 2,−3, 5).
Then, x = 1 + 5 + 3 = 9, and the determinant and inverse are

δ = 94 − 3 (5)
0
(9)

3
+ 2 (5)

1
(9)

2 − (5)
2
(9)

1
+ (5)

3
(9)

0
= 5084,

A−1 =
1

δ
Ci rc

(
δ − 53

9
,
δ − 93

5
,−
(
50
) (

92
)
,−
(
51
) (

91
)
,− (5)

2 (
90
))

=
1

5084
Ci rc

(
551 871 −81 −45 −25

)
.
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For the eigenvalues, λ0 = 1− a4 = 4, then θ = 2π
5 and

R1 = 1 + (−1 + 5) cos
2π

5
+ (2− 3) cos

4π

5
=

5

4

√
5 +

1

4
≈ 3.0451,

R2 = 1 + 4 cos
4π

5
− cos

8π

5
= 1 + 4 cos

4π

5
− cos

2π

5
≈ −2.5451,

C1 = (−1− 5) sin
2π

5
+ (2 + 3) sin

4π

5
≈ −2.7674,

C2 = −6 sin 4π

5
+ 5 sin

8π

5
= −6 sin 4π

5
− 5 sin

2π

5
= −8.2820,

so that
λ1 = 3.0451− 2.7674i and λ4 = 3.0451 + 2.7674i,

λ2 = −2.5451− 8.2820i and λ3 = −2.5451 + 8.2820i.

From the above illustration, it is easy to see that in the iterative process
of computing the determinant, some data can be stored for the next process
of computing the inverse. So, the computation process can be done in one
function in a parallel way to get very fast and efficient performance.

Algorithm 1. INPUT: A = Ci rc (a1, a2, . . . , an−1, an) with the entries of al-
ternating Fibonacci numbers.
OUTPUT: δ = det (A) and A−1 = 1

δ Ci rc (e1, e2, . . . , en−1, en).

(1) x← an − an−1 + 1; s← 1; r ← xn−2;
(2) δ ← r(x+ an−1); e1 ← −1; e1 ← −r;
(3) for j = 1 to n− 2 do

r ← r
x ; ej+2 ← −sr; s← san;

t← sran−1−j ; δ ← δ + t;
end do;

(4) e1 ← δ+se1
x ; e2 ← δ+e2

an
;

(5) return(δ, A−1).

For the eigenvalues, it is also very easy to see that only
⌊
n−1
2

⌋
eigenvalues

are computed iteratively and all without any complex number arithmetic used.
So, it must be much faster than applying the general formula as mentioned in
Section 2.

Algorithm 2. INPUT: A = Ci rc (a1, a2, . . . , an−1, an) with the entries of al-
ternating Fibonacci numbers.
OUTPUT: λ0, λ1, . . . , λn−2, λn−1; the eigenvalues of A.

(1) x← nmod2;
(2) if x = 0 then λn

2
← (an−1 − an − 1) endif;

(3) λ0 ← (1− an−1) ; m←
⌊
n−1
2

⌋
; θ ← 2π

n ;
(4) for k = 1 to m do

R← 1; C ← 0; S ← 0; T ← kθ;
for s = 1 to m do

S ← S + T ; x← (as+1 + an−s+1) cosS; R← R+ x;
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y ← (as+1 − an−s+1) sinS; C ← C + y;
end do;

if x = 0 then R←
(
R+ (−1)k an

2 +1

)
endif;

λk ← R+ C.i; λn−k ← R− C.i;
end do;

(5) return(λ0, λ1, . . . , λn−2, λn−1).

6. Concluding remark

The formulation for the determinant and inverse of the matrices involving
the alternating Fibonacci sequence can be presented in one theorem and in a
simple way, so an efficient algorithm can be constructed for its computation.
The method of deriving the formulation is simply using elementary row or
column operations. For the eigenvalues, the previous formulation from the
case of general circulant matrices can be simplified by considering the specialty
of the alternating Fibonacci numbers and using cyclic group properties, so the
computation can be done efficiently without involving any complex number
arithmetic, i.e., all complex number eigenvalues are constructed.

The methods in this article should be applicable for any variant of circulant
matrices (such as skew or more general r-circulant) with any specific formation
of numbers (such as Fibonacci, Lucas, Pell, etc.). These would become the
nearly future works.
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