The construction of transgenic mouse using embryonic stem (ES) cells has been crucial in the functional studies of gene on mouse genome. Gene knockout mice have been powerful for elucidating the function of genes as well as a research model for human diseases. Gene targeting and gene trapping mathods have been the representative technologies for making the knockout mice by using ES cells. Since the gene targeting and the gene trapping methods were independently developed about 20 years ago, it's efficiency and productivity has been improved with a advance of molecular biology. Conventional gene targeting method has been changes to high throughput conditional gene targeting. The combination of the advantage of gene targeting and gene tapping elements allows to extend a spectrum of gene trapping and to improve the efficiency of gene targeting. These advance should be able to produce the mutant with various phenotype to target a certain gene, and in postgenome era they have served as crucial research tools in understanding the functional study of whole genome in mouse.
Hang Gyeong;Mi Sook Choe;Sung-Ho Lee;Sung Han Park;Hyuk Kim;Ja Choon Koo;No Youl Kim;Su Hyun Park;Jeung Joo Lee
Proceedings of the Botanical Society of Korea Conference
/
1999.07a
/
pp.17-20
/
1999
In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analyzed in order to evaluate the gene-tagging efficiency. The 3'end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3'end of the Ds in rice. Nearly 80% of Ds elements wered excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds that underwent secondary transposition in the later cultures. 8% of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybriodization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a largee scale mutagenesis using a heterologous Ac/Ds family in rice.
This involves identifying and cloning trapped genes from cultured cells carrying the gene-trap constructs and generating cloned zebrafish using these cells for functional study. Gene-trapping studies in gene-trapped cells were carried out in initial and cloned zebrafish carrying gene-trap events were successfully produced based on the nuclear transplantation technique. Two kind of retroviral gene-trap constructs were adopted. The first one(SA/GFP-TP), constructed in my laboratory, carries a GFP reporter gene containing a splicing acceptor and an internal neo gene. The second one(Neo-TP), obtained from Dr. Hicks (Hicks et al., 1997), contains a promoter-less neo gene located in the LTR sequence of a retroviral vector. The infected cells were subjected to drug selection(neomycin treatment) because the two constructs carry the neomycin resistant gene. All those cells survived the neomycin treatment should carry the proviral insertions. For Neo-TP, Isolated DNA from the neomycin-resistant fibroblast cells infected by Neo-TP, was digested with EcoR1 restriction enzyme and transformed into bacteria after ligation. This procedure led to the isolation of seven clones carrying flanking cellular DNA with a typical retroviral integration signature sequence. These clones contained genomic DNA ranging from 1kb to 7kb and sequences of 300-600 bp were obtained from each of the rescued plasmids. Database searching showed that all of them share high homology to zebrafish sequences. For fish cloning using tagged cells, initially, nucleus donors directly selected from a mixture of cells(Neo-TP cells) were used. A total of 44 embryos(3.7%) out of 1179 transplants were reached blastula stage; 8 of these embryos(0.8%) hatched and 3(0.3%) of them survived to adulthood. One out of three lived cloned zebrafish has an amplified fragment and was labeled with 32P.
Mannen, H.;Dote, Y.;Uratsuji, H.;Yoshizawa, K.;Okamoto, S.;Tsuji, S.
Asian-Australasian Journal of Animal Sciences
/
v.17
no.3
/
pp.309-312
/
2004
We performed exon trapping in order to locate functional genes on chicken chromosomes (GGA) and to identify functional gene sequences from chicken cosmids. Sequence analysis of 100 clones revealed 17 putative exons, five of which were identified with known sequences in a gene database search: thymopoietin beta (TMPO), U5 snRNP-specific 40 kDa protein (HPRP8BP), dihydropyridine receptor alpha 1 subunit (CACNL1A3), cystein string protein (CPS) and C15orf4. We attempted to map the genes to chicken chromosomes by using FISH and linkage analysis. The chromosomal localizations were GGA1 (TMPO), GGA10 (C15orf4), GGA23 (HPRP8BP) and GGA28 (CPS) by FISH and linkage analysis, while that of CACNL1A3 was predicted to be on a microchromosome by FISH but not by linkage analysis. Comparative mapping analyses between chickens and humans for the genes revealed both known and new synteny. The syntenic conservation between GGA1 and human chromosome (HSA) 12q23 (TMPO) and between GGA10 and HSA15q25 (C15orf4), were consistent with a recent publication, while two new syntenies were observed between GGA28 and HSA20q13.3 in CPS and between GGA23 and HSA1p34-35 in HPRP8BP. The information of presently mapped genes can contribute as anchor markers based on functional genes and the construction of a comparative map.
An extracellular protease (Mc1) was isolated from the nematode-trapping fungus Monacrosporium cystosporium by gel filtration, anion-exchange, and hydrophobic interaction chromatographies. This protease had a molecular mass of approximately 38 kDa and displayed an optimal activity at pH 7-9 and $56^{\circ}C$ (over 30 min). Its proteolytic activity was highly sensitive to the serine protease inhibitor PMSF (phenylmethylsulfonylfluoride, 0.1 mM), indicating that it belonged to the serine-type peptidase group. The Michaelis constant ($K_m$) and $V_max$ for substrate N-Suc-Ala-Ala-Pro-Phe-pNA were $1.67{\times}10^{-4}\;M$ and 0.6071 $OD_{410}$ per 30 s, respectively. This protease could degrade a broad range of substrates including casein, gelatin, BSA (bovine serum albumin), and nematode cuticle. Moreover, the enzyme could immobilize the free-living nematode Panagrellus redivivus and the pine wood nematode Bursaphelenchus xylophilus, suggesting that it might playa role in infection against nematodes. The encoding gene of Mc1 was composed of one intron and two exons, coding for a polypeptide of 405 amino acid residues. The deduced amino acid sequence of Mcl showed 61.4-91.9% identity to serine proteases from other nematode-trapping fungi. Our results identified that Mcl possessed biochemical properties including optimal reaction condition and substrate preference that are different from previously identified serine proteases.
In this study, the nematode-trapping fungus, Monacrosporium sphaeroides, was transformed with a plasmid harboring the hygromycin B phosphotransferase gene, via restriction enzyme-mediated integration (REMI). Frequencies of up to 94 transformants ${\mu}g^{-1}$ per linearized plasmid DNA were obtained by optimizing the PEG concentration, as well as the category and quantity of the added restriction enzyme. $90\%$ of the transformants were determined to be stable for drug resistance when 20 randomly selected transformants were tested. Southern analyses revealed that the transforming DNA was integrated into the M. sphaeroides genome either with or without rearrangement. Five mitotic stable mutant strains were obtained using this approach, all of which had been altered with regard to sporulation capacity and pathogenicity toward nematodes. Southern blot analyses of the five mutants revealed that foreign plasmid DNA had integrated into the genome. Three of the mutants, Tms2316, Tms3583 and Tms1536, exhibited integration at a single location, whereas the remaining two, Tms32 and Tms1913, manifested integration at double or multiple locations. Our results suggest that the transformation of M. sphaeroides via REMI will facilitate insertional mutagenesis, the functional analysis of a variety of genes, and the tagging or cloning of genes of interest.
A novel gene, designated mgt-6, containing four splicing variants, was isolated from a gene trap clone library of C3H/10T1/2 cells transfected with retroviral promoterless gene-trap vector, ROSAFARY. The transcript variants were differentially expressed in murine tissues and cell lines and differentially responded to diverse stimuli including TGF-${\beta}1$ and mitogen-activated protein kinase (MAPK) inhibitors. The mgt-6 gene encoded a protein of 37 or 11 amino acid residuals with cytoplasmic distribution. However, when C3H/10T1/2 cells were treated with 5-azacytidine, the protein translocated into cell nucleus as indicated by fused LacZ or C-terminally tagged EGFP. Our preliminary results suggest that further study on the role of mgt-6 gene in cell transformation and differentiation may be of significance.
Soil-borne fungal pathogens such as Verticillium and Rhizoctonia can colonize in the stem tissue of plant through root and lead to wilting symptoms of plant by blocking. water transportation. During the colonization of Rhizoctonia solani in the vascular tissue of tomato stems, particularly, phenylalanine ammonia-lyase (PAL) gene induction pattern was cyclized showing peak induction at two different time points (10 and 80 h) after fungal spores inoculation in vivo. In leaves or roots, however, no such cycling pattern was observed. The first induction peak may be due to an initial sporulation events leading to a second induction peak by a proliferation of fungal spores to the upper stems or other tissues from an initial spore trapping sites. Tomato PAL gene was also dramatically induced by wounding, light illumination and mercury chloride treatment but was not cyclized. Mercury chloride showed the earliest induction with all tissues even at half an hour after treatment.
In order to elucidate ultimate biological function of the genome, the model animal system carrying mutations is indispensable. Recently, large-scale mutagenesis projects have been launched in various species. Especially, the mouse is considered to be an ideal model to human because it is a mammalian species accompanied with well-established genetic as well as embryonic technologies. In 1990', large-scale mouse mutagenesis projects firstly initiated with a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU) by the phenotype-driven approach or forward genetics. The knockout mouse mutagenesis projects with trapping/conditional mutagenesis have then followed as Phase II since 2006 by the gene-driven approach or reverse genetics. Recently, the next-generation gene targeting system has also become available to the research community, which allows us to establish and analyze mutant mice carrying an allelic series of base substitutions in target genes as another reverse genetics. Overall trends in the large-scale mouse mutagenesis will be reviewed in this article particularly focusing on the new advancement of the next-generation gene targeting system. The drastic expansion of the mutant mouse resources altogether will enhance the systematic understanding of the life. The construction of the mutant mouse resources developed by the forward and reverse genetic mutagenesis is just the beginning of the annotation of mammalian genome. They provide basic infrastructure to understand the molecular mechanism of the gene and genome and will contribute to not only basic researches but also applied sciences such as human disease modelling, genomic medicine and personalized medicine.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.