A Current Advance of Gene Targeting and Gene Trapping Methods As Tools of Making Transgenic Mice

형질전환생쥐의 제조 수단으로서 유전자 적중법 및 함정법의 개발 현황

  • Kang, Hae-Mook (Dept. of Genetic Engineering, College of Science and Engineering, Cheongju University)
  • 강해묵 (청주대학교 자연과학부 유전공학)
  • Received : 2010.11.19
  • Accepted : 2010.12.01
  • Published : 2010.12.31

Abstract

The construction of transgenic mouse using embryonic stem (ES) cells has been crucial in the functional studies of gene on mouse genome. Gene knockout mice have been powerful for elucidating the function of genes as well as a research model for human diseases. Gene targeting and gene trapping mathods have been the representative technologies for making the knockout mice by using ES cells. Since the gene targeting and the gene trapping methods were independently developed about 20 years ago, it's efficiency and productivity has been improved with a advance of molecular biology. Conventional gene targeting method has been changes to high throughput conditional gene targeting. The combination of the advantage of gene targeting and gene tapping elements allows to extend a spectrum of gene trapping and to improve the efficiency of gene targeting. These advance should be able to produce the mutant with various phenotype to target a certain gene, and in postgenome era they have served as crucial research tools in understanding the functional study of whole genome in mouse.

배아줄기세포를 이용한 형질전환동물의 제조는 유전자의 기능 연구에 필수적이다. 특히 유전자 파괴 생쥐는 유전자의 기능 연구뿐만 아니라 사람 질병 연구에 중요한 모델이 되어 왔다. 유전자 적중법(gene targeting)과 유전자 함정법(gene trapping)은 ES 세포에서 녹아웃(knockout) 생쥐를 제조하는 대표적인 방법이다. 20여 년 전 유전자 적중법과 함정법이 최초로 개발된 이후에 이 기술은 많은 변화를 거쳤다. 특히 상동재조합에 기초한 전통적 유전자 적중법은 대량 제조기반의 조건부 유전자 적중법의 개발로 이어졌고, 유전자 적중법 및 유전자 함정법의 장점 요소의 조합은 유전자를 파괴하는 범위를 넓혔고, 유전자 적중을 더욱 효율적으로 만들었다. 이런 기술은 특정 유전자를 표적으로 하는 다양한 종류의 돌연변이 형질전환동물을 제조할 수 있게 하여 포스트게놈 시대에 요구되는 전체 유전체의 기능 연구를 더욱 효과적으로 진행시켜 줄 것이다.

Keywords

References

  1. Abuin A, Hansen GM, Zambrowicz B (2007) Gene trap mutagenesis. Handb Exp Pharmacol 178:129-147. https://doi.org/10.1007/978-3-540-35109-2_6
  2. Araki K, Imaizumi T, Sekimoto T, Yoshinobu K, Yoshimuta J, Akizuki M, Miura K, Araki M, Yamamura K (1999) Exchangeable gene trap using the Cre/mutated lox system. Cell Mol Biol 45:737-750.
  3. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, oyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, tewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36:921-924. https://doi.org/10.1038/ng0904-921
  4. Bestor TH (2005) Transposons reanimated in mice. Cell 122:322-325. https://doi.org/10.1016/j.cell.2005.07.024
  5. Brown SD, Hancock JM (2006) The mouse genome. Genome Dyn 2:33-45.
  6. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288-1292. https://doi.org/10.1126/science.2660260
  7. Capecchi MR (2001) Generating mice with targeted mutations. Nat Med 7:1086-1090. https://doi.org/10.1038/nm1001-1086
  8. Carlson CM, Frandsen JL, Kirchhof N, McIvor RS, Largaespada DA (2005) Somatic integration of an oncogene- harboring sleeping beauty transposon models liver tumor development in the mouse. Proc Natl Acad Sci USA 102:17059-17064. https://doi.org/10.1073/pnas.0502974102
  9. Copeland NG, Jenkins NA, Court DL (2001) Recombineering: A powerful new tool for mouse functional genomics. Nat Rev Genet 2:769-779.
  10. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473-483. https://doi.org/10.1016/j.cell.2005.07.013
  11. Dupuy AJ, Fritz S, Largaespada DA (2001) Transposition and gene disruption in the male germline of the mouse. Genesis 30:82-88. https://doi.org/10.1002/gene.1037
  12. Friedel RH, Plump A, Lu X, Spilker K, Jolicoeur C, Wong K, Venkatesh TR, Yaron A, Hynes M, Chen B, Okada A, McConnell SK, Rayburn H, Tessier-Lavigne M (2005) Gene targeting using a promoterless gene trap vector ("targeted trapping") is an efficient method to mutate a large fraction of genes. Proc Natl Acad Sci USA 102:13188-13193. https://doi.org/10.1073/pnas.0505474102
  13. Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: A genetic screen to identify and mutate developmental genes in mice. Genes & Development 5: 1513-1523. https://doi.org/10.1101/gad.5.9.1513
  14. Gossler A, Joyner AL, Rossant J, Skarnes WC (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244:463-465 https://doi.org/10.1126/science.2497519
  15. Glaser S, Anastassiadis K, Stewart AF (2005). Current issues in mouse genome engineering. Nat Genet 37:1187-1193. https://doi.org/10.1038/ng1668
  16. Hacking DF (2008) "Knock, and it shall be opened": Knocking out and knocking in to reveal mechanisms of disease and novel therapies. Early Hum Dev 84:821-827. https://doi.org/10.1016/j.earlhumdev.2008.09.011
  17. Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630-636. https://doi.org/10.1104/pp.104.041061
  18. Ishida Y, Leder P (1999) RET: A poly A-trap retrovirus vector for reversible disruption and expression monitoring of genes in living cells. Nucleic Acids Res 27:e35. https://doi.org/10.1093/nar/27.24.e35
  19. Ivics Z, Izsvak Z (2004) Transposable elements for transgenesis and insertional mutagenesis in vertebrates: A contemporary review of experimental strategies. Methods Mol Biol 260:255-276.
  20. Kang HM, Kang NK, Kim DG, Shin HS (1997) Dicistronic tagging of genes active in embryonic stem cells of mice. Mol Cells 7: 502-508.
  21. Kothary R, Clapoff S, Brown A, Campbell R, Peterson A, Rossant J (1988) A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature 335:435-437. https://doi.org/10.1038/335435a0
  22. Lee T, Shah C, Xu EY (2007) Gene trap mutagenesis: A functional genomics approach towards reproductive research. Mol Hum Reprod 13:771-779. https://doi.org/10.1093/molehr/gam069
  23. Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13:476-484. https://doi.org/10.1101/gr.749203
  24. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the protooncogene int-2 in mouse embryoderived stem cells: A general strategy for targeting mutations to non-selectable genes. Nature 336:348-352. https://doi.org/10.1038/336348a0
  25. McCarrick JW III, Parnes JR, Seong RH, Solter D, Knowles BB (1993) Positive-negative selection gene targeting with the diphtheria toxin A-chain gene in mouse embryonic stem cells. Transgenic Res 2:183-190. https://doi.org/10.1007/BF01977348
  26. Michael SK, Brennan J, Robertson EJ (1999) Efficient gene-specific expression of cre recombinase in the mouse embryo by targeted insertion of a novel IRES-Cre cassette into endogenous loci. Mech Dev 85:35-37. https://doi.org/10.1016/S0925-4773(99)00052-0
  27. Nagy A, Mar L, Watts G (2009) Creation and use of a cre recombinase transgenic database. Methods Mol Biol 530:1-4. https://doi.org/10.1007/978-1-59745-471-1_1
  28. Niwa H (2010) Mouse ES cell cuture system as a model of development. Develop Growth Differ 52:275-283. https://doi.org/10.1111/j.1440-169X.2009.01166.x
  29. Niwa H, Araki K, Kimura S, Taniguchi S, Wakasugi S, Yamamura K (1993) An efficient gene-trap method using poly A trap vectors and characterization of gene-trap events. J Biochem 113:343-349. https://doi.org/10.1093/oxfordjournals.jbchem.a124049
  30. O'Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123-9127. https://doi.org/10.1073/pnas.84.24.9123
  31. Schnutgen F, Ghyselinck NB (2007) Adopting the good reFLEXes when generating conditional alterations in the mouse genome. Transgenic Res 16:405-413. https://doi.org/10.1007/s11248-007-9089-8
  32. Schnutgen F, Hansen J, De-Zolt S, Horn C, Lutz M, Floss T, Wurst W, Noppinger PR, von Melchner H (2008) Enhanced gene trapping in mouse embryonic stem cells. Nucleic Acids Res 36:e133. https://doi.org/10.1093/nar/gkn603
  33. Shigeoka T, Kawaichi M, Ishida Y (2005) Suppression of nonsense-mediated mRNA decay permits unbiased gene trapping in mouse embryonic stem cells. Nucleic Acids Res 33:e20. https://doi.org/10.1093/nar/gni022
  34. Skarnes WC, Auerbach A, Joiner AL (1992) A gene trap approach in mouse embryonic stem cells: The lacZ reporter is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes & Development 6:903-918. https://doi.org/10.1101/gad.6.6.903
  35. Sun LV, Jin K, Liu Y, Yang W, Xie X, Ye L, Wang L, Zhu L, Ding S, Su Y, Zhou J, Han M, Zhuang Y, Xu T, Wu X, Gu N, Zhong Y (2008) PBmice: An integrated database system of piggyBac (PB) insertional mutations and their characterizations in mice. Nucleic Acids Res 36:D729-734.
  36. Szybalski W (1992) Use of the HPRT gene and the HAT selection technique in DNA-mediated transformation of mammalian cells: First steps toward developing hybridoma techniques and gene therapy. Bioessays 14: 495-500. https://doi.org/10.1002/bies.950140712
  37. Testa G, Schaft J, van der Hoeven F, Glaser S, Anastassiadis K, Zhang Y, Hermann T, Stremmel W, Stewart AF (2004) A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38:151-158. https://doi.org/10.1002/gene.20012
  38. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503-512. https://doi.org/10.1016/0092-8674(87)90646-5
  39. Vivian JL, Chen Y, Yee D, Schneider E, Magnuson T (2002) An allelic series of mutations in Smad2 and Smad4 identified in a genotype-based screen of N-ethyl- N-nitrosourea-mutagenized mouse embryonic stem cells. Proc Natl Acad Sci USA 99:15542-15547. https://doi.org/10.1073/pnas.242474199
  40. Wang W, Bradley A, Huang Y (2009) A piggyBac transposon- based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genome Res 19:667-673. https://doi.org/10.1101/gr.085621.108
  41. Wu S, Ying G, Wu Q, Capecchi MR (2007) Toward simpler and faster genome-wide mutagenesis in mice. Nat Genet 39:922-930. https://doi.org/10.1038/ng2060
  42. Yagi T, Nada S, Watanabe N, Tamemoto H, Kohmura N, Ikawa Y, Aizawa S (1993) A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal Biochem 214:77-86. https://doi.org/10.1006/abio.1993.1459
  43. Zambrowicz BP, Friedrich GA (1998) Comprehensive mammalian genetics: History and future prospects of gene trapping in the mouse. Int J Dev Biol 42:1025-1036.
  44. Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SL, Person C, Sands AT (1998) Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392:608-611. https://doi.org/10.1038/33423
  45. Zheng B, Mills AA, Bradley A (1999) A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res 27:2354-2360. https://doi.org/10.1093/nar/27.11.2354
  46. Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R (1990) $\beta$2-microglobulin deficient mice lack $CD4^{-}8^{+}$ cytotoxic T cells. Nature 344: 742-746. https://doi.org/10.1038/344742a0