• Title/Summary/Keyword: Gene tagging

Search Result 64, Processing Time 0.024 seconds

Linkage Disequilibrium (LD) Mapping and Tagging SNP Selection of C-Fos Induced Growth Factor (Figf) Gene in Korean Population

  • Kim, Sook;Yoo, Yeon-Kyung;Jang, Hye-Yoon;Shin, Eun-Soon;Cho, Eun-Young;Kim, Eu-Gene;NamKung, Jung-Hyun;Yang, Jun-Mo;Lee, Jong-Eun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.7-10
    • /
    • 2006
  • We performed comprehensive SNP validation and linkage disequilibrium (LD) analysis of the c-fos induced growth factor (Figf) gene in Korean population. Out of 32 SNPs, only 9 SNPs were polymorphic in Korean population. Validated SNPs formed a single extended haplotype block with strong LD through the entire length of the gene. Tagging SNP analysis picked only 2 SNPs to represent most of the genetic variation information of the Figf gene. Our results demonstrate the utility of LD block and tagging SNP analysis for an efficient way of performing a candidate gene based association study.

Genome-wide in-locus epitope tagging of Arabidopsis proteins using prime editors

  • Cheljong Hong;Jun Hee Han;Gue-Ho Hwang;Sangsu Bae;Pil Joon Seo
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.66-70
    • /
    • 2024
  • Prime editors (PEs), which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusion proteins programmed with prime editing guide RNAs (pegRNAs), can not only edit bases but also install transversions, insertions, or deletions without both donor DNA and double-strand breaks at the target DNA. As the demand for in-locus tagging is increasing, to reflect gene expression dynamics influenced by endogenous genomic contexts, we demonstrated that PEs can be used to introduce the hemagglutinin (HA) epitope tag to a target gene locus, enabling molecular and biochemical studies using in-locus tagged plants. To promote genome-wide in-locus tagging, we also implemented a publicly available database that designs pegRNAs for in-locus tagging of all the Arabidopsis genes.

A Gene-Tagging System for Monitoring of Xanthomonas Species

  • Song, Wan-Yeon;Steven W. Hutcheson;Efs;Norman W. Schaad
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.137-143
    • /
    • 1999
  • A novel chromosomal gene tagging technique using a specific fragment of the fatty acid desaturase-like open reading frame (des-like ORF) from the tox-argK gene cluster of Pseudomonas syringae pv. phaseolicola was developed to identify Xanthomonas spp.released into the environment as biocontrol agents. X. campestris pv. convolvuli FB-635, a pathogen of Convolvulus arvensis L., (bindweed), was chosen as the organism in which to develop and test the system. A 0.52 kb DES fragment amplified from P. syringae pv. phaseolicola C-199 was inserted into pGX15, a cosmid clone containing a 10.3 kb Eco RI-HindIII fragment derived from the xanthomonadin biosynthetic gene cluster contained in plasmid pIG102, to create a pigG::DES insertion. The 10.8 kb EcoRI-BamHI fragment carrying the pigG:: DES insertion was cloned into pLAFR3 to generate pLXP22. pLXP22 was then conjugated into X. campestris pv. convolvuli FB-635 and the pigG::DES insertion integrated into the bacterial chromosome by marker exchange. Rifampicin resistant, tetracycline sensitive, starch hydrolyzing, white colonies were used to differentiate the marked strain from yellow pigmented wild-type ones. PCR primers specific for the unique DES fragment were used for direct detection of the marked strain. Result showed the marked strain could be detected at very low levels even in the presence of high levels of other closely related or competitive bacteria. This PCR-based DES-tagging system provides a rapid and specific tool for directly monitoring the dispersal and persistence of Xanthomonas spp.released into the environment.

  • PDF

Transposable Genetic Elements, the Mechanisms of Transposition, and Their Uses in Genetic Studies (게놈 내 전이성 인자와 그 이동기구 및 이용)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.241-260
    • /
    • 1995
  • Transposons, present in the genomes of all living organisms, are genetic element that can change positions, or transpose, within the genome. Most genomes contain several kinds of transposable elements and the molecular details of the mechanisms by which these transposons move have recently been uncovered in many families of transposable elements. Transposition is brought about by an enzyme known as transposaese encoded by the autonomous transposon itself, but, in the unautonomous transposon lacking the gene encoding the transposase, movement occurs only at the presence of the enzyme encoded by the autonomous one. There are two types of transposition events, conservative and replicative transposition. In the former the transposon moves without replication, both strands of the DNA moving together from one place to the other while in the latter the transposition frequently involves DNA replication, so one copy of transposon remains at its original site as another copy insole to a new site. The insertion of transposon into a gene can prevent it expression whereas excision from the gene may restore the ability of the gene to be expressed. There are marked similarities between transposons and certain viruses having single stranded Plus (+) RNA genomes. Retrotransposons, which differ from the ordinary transposons in that they transpose via an RNA-intermediate, behave much like retroviruses and have a structure of integrated retrovial DNA when they are inserted to a new target site. An insertional mutagenesis called transposon-tagging is now being used in a number of plant species to isolate genes involved in developmental and metabolic processes which have been proven difficult to approach by the traditional methods. Attempts to device a transposon-tagging system based on the maize Ac for use in heterologous species have been made by many research workers.

  • PDF

Identification of Novel Salt Stress-responsive Genes Using the Activation Tagging System in Arabidopsis (애기장대에서 activation tagging system을 이용한 새로운 고염 스트레스 반응 유전자의 동정)

  • Seok, Hye-Yeon;Nguyen, Linh Vu;Bae, Hyoungjoon;Ha, Jimin;Kim, Ha Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1030-1041
    • /
    • 2018
  • Abiotic stresses limit the growth and productivity of plants. Cellular adaptation to abiotic stresses requires coordinated regulation in gene expression directed by complex mechanisms. This study used the activation tagging system to identify novel salt stress-responsive genes. The study selected 9 activation tagging lines that showed salt stress-tolerant phenotypes during their germination stages. Thermal asymmetric interlaced-PCR (TAIL-PCR) was used to identify the T-DNA tagging sites on the Arabidopsis genome in selected activation tagging lines, including AT7508, AT7512, AT7527, AT7544, AT7548, and AT7556. RT-PCR analysis showed that ClpC2/HSP93-III (At3g48870), plant thionin family (At2g20605), anti-muellerian hormone type-2 receptor (At3g50685), vacuolar iron transporter family protein (At4g27870), and microtubule-associated protein (At5g16730) were activated in AT7508, AT7512, AT7527, AT7544, and AT7556, respectively. Interestingly, in AT7548, both the genes adjacent to the T-DNA insertion site were activated: Arabinogalactan protein 13 (AGP13) (At4g26320) and F-box/RNI-like/FBD-like domains-containing protein (At4g26340). All of the seven genes were newly identified as salt stress-responsive genes from this study. Among them, the expression of ClpC2/HSP93-III, AGP13, F-box/RNI-like/FBD-like domains-containing protein gene, and microtubule-associated protein gene were increased under salt-stress condition. In addition, AT7508, AT7527, and AT7544 were more tolerant to salt stress than wild type at seedling development stage, functionally validating the screening results of the activation tagging lines. Taken together, our results demonstrate that the activation tagging system is useful for identifying novel stress-responsive genes.

KRDD: Korean Rice Ds-tagging Lines Database for Rice (Oryza sativa L. Dongjin)

  • Kim, Chang-Kug;Lee, Myung-Chul;Ahn, Byung-Ohg;Yun, Doh-Won;Yoon, Ung-Han;Suh, Seok-Cheol;Eun, Moo-Young;Hahn, Jang-Ho
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.64-67
    • /
    • 2008
  • The Korean Rice Ds-tagging lines Database (KRDD) is designed to provide information about Ac/Ds insertion lines and activation tagging lines using japonica rice. This database has provided information on 18,158 Ds lines, which includes the ID, description, photo image, sequence information, and gene characteristics. The KRDD is visualized using a web-based graphical view, and anonymous users can query and browse the data using the search function. It has four major menus of web pages: (i) a Blast Search menu of a mutant line; Blast from rice Ds-tagging mutant lines; (ii) a primer design tool to identify genotypes of Ds insertion lines; (iii) a Phenotype menu for Ds lines, searching by identification name and phenotype characteristics; and (iv) a Management menu for Ds lines.

Transformation of Maize Controlling Element Ac and Ds into Armoracia rusticana via, Agrobacterium tumefaciens (Agrobacterium tumefaciens를 매개로 한 옥수수 유동유전자 Ac 및 Ds에 의한 서양고추냉이 (Armoracia rusticana)의 형질전환)

  • 배창휴;노일섭;임용표;민경수;김동철;김학진;이효연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.6
    • /
    • pp.319-326
    • /
    • 1994
  • For the gene tagging of Armoracia rusticana, maize controlling element Ac and Ds were introduced into A.rusticana via Agrobacterium-mediated transformation method. We established an efficient in via regeneration and transformation system for gene transfer in A. rusticana. The optimum in via regeneration condition has been obtained from leaf, petiole and root organs on modified MS medium supplemented with NAA 0.1 mg/L plus BA 1.0 mg/L for direct shooting and with free growth regulators for root induction for transformation, the leaf, petiole and root explants of A. rusticana were concultivated with Agrobacterium tumefaciens, LBA4404 which carries a binary vector pEND4K containing maize controlling element Ac or Ds, respectively: Selections were performed in the shoot induction medium supplemented with 100 mg/L kanamycin, and 500 mg/L carbenicillin transformation frequency showed about 8 to 10% in case of leaf disks. PCR md Southern blot analyses showed that the Ac and the Ds elements were integrated into the chromosome of donor plants.

  • PDF

A Gene Functional Study of Rice Using Ac/Ds Insertional Mutant Population

  • Kim, So-Young;Kim, Chang-Kug;Kang, Min;Ji, Seung-Uk;Yoon, Ung-Han;Kim, Yong-Hwan;Lee, Gang-Seob
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Rice is the staple food of more than 50% of the world population. Cultivated rice has the AA genome (diploid, 2n = 24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems have been utilized as main insertional mutagens in rice. The Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertional mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been conducted by collaborative works in Korea.

Agrobacterium-mediated Transformation of the Winter Mushroom, Flammulina velutipes

  • Cho, Jung-Hee;Lee, Seung-Eun;Chang, Who-Bong;Cha, Jae-Soon
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.104-107
    • /
    • 2006
  • Flammulina velutipes was transformed efficiently by Agrobacterium-mediated transformation system. The transformation frequency was about 16% with the gill tissues of the fungal fruiting body. Southern hybridization and genetic analysis suggest that the introduced DNA was inserted onto different locations of the fungal genome, and inherited stably to the next generation via basidiospores. Transformation or gene tagging with Agrobacterium T-DNA based vector should be useful for wide ranges of genetic or molecular biological studies of the mushroom.

Current status of Ac/Ds mediated gene tagging systems for study of rice functional genomics in Korea (Ac/Ds 삽입 변이체를 이용한 벼 유전자 기능 연구)

  • Lee, Gang-Seob;Park, Sung-Han;Yun, Do-Won;Ahn, Byoung-Ohg;Kim, Chang-Kug;Han, Chang-Deok;Yi, Gi-Hwan;Park, Dong-Soo;Eun, Moo-Young;Yoon, Ung-Han
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • Rice is the staple food of more than 50% of the worlds population. Cultivated rice has the AA genome (diploid, 2n=24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos (Hirochika. 1997) have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems has been utilized as main insertional mutagens in rice. A main drawback of a T-DNA scheme is that Agrobacteria-mediated transformation in rice requires extensive facilities, time, and labor. In contrast, the Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. Revertants can be utilized to correlate phenotype with genotype. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertionally mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been launched by collaborative works from 2001 in Korea.