• Title/Summary/Keyword: Gene network

Search Result 561, Processing Time 0.029 seconds

Deciphering the Core Metabolites of Fanconi Anemia by Using a Multi-Omics Composite Network

  • Xie, Xiaobin;Chen, Xiaowei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.387-395
    • /
    • 2022
  • Deciphering the metabolites of human diseases is an important objective of biomedical research. Here, we aimed to capture the core metabolites of Fanconi anemia (FA) using the bioinformatics method of a multi-omics composite network. Based on the assumption that metabolite levels can directly mirror the physiological state of the human body, we used a multi-omics composite network that integrates six types of interactions in humans (gene-gene, disease phenotype-phenotype, disease-related metabolite-metabolite, gene-phenotype, gene-metabolite, and metabolite-phenotype) to procure the core metabolites of FA. This method is applicable in predicting and prioritizing disease candidate metabolites and is effective in a network without known disease metabolites. In this report, we first singled out the differentially expressed genes upon different groups that were related with FA and then constructed the multi-omics composite network of FA by integrating the aforementioned six networks. Ultimately, we utilized random walk with restart (RWR) to screen the prioritized candidate metabolites of FA, and meanwhile the co-expression gene network of FA was also obtained. As a result, the top 5 metabolites of FA were tenormin (TN), guanosine 5'-triphosphate, guanosine 5'-diphosphate, triphosadenine (DCF) and adenosine 5'-diphosphate, all of which were reported to have a direct or indirect relationship with FA. Furthermore, the top 5 co-expressed genes were CASP3, BCL2, HSPD1, RAF1 and MMP9. By prioritizing the metabolites, the multi-omics composite network may provide us with additional indicators closely linked to FA.

Parallel Bayesian Network Learning For Inferring Gene Regulatory Networks

  • Kim, Young-Hoon;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.202-205
    • /
    • 2005
  • Cell phenotypes are determined by the concerted activity of thousands of genes and their products. This activity is coordinated by a complex network that regulates the expression of genes. Understanding this organization is crucial to elucidate cellular activities, and many researches have tried to construct gene regulatory networks from mRNA expression data which are nowadays the most available and have a lot of information for cellular processes. Several computational tools, such as Boolean network, Qualitative network, Bayesian network, and so on, have been applied to infer these networks. Among them, Bayesian networks that we chose as the inference tool have been often used in this field recently due to their well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. To alleviate this problem, we had developed the algorithm of MONET(MOdularized NETwork learning), which is a new method for inferring modularized gene networks by utilizing two complementary sources of information: biological annotations and gene expression. Afterward, we have packaged and improved MONET by combining dispersed functional blocks, extending species which can be inputted in this system, reducing the time complexities by improving algorithms, and simplifying input/output formats and parameters so that it can be utilized in actual fields. In this paper, we present the architecture of MONET system that we have improved.

  • PDF

Inferring Disease-related Genes using Title and Body in Biomedical Text (생물학 문헌 데이터의 제목과 본문을 이용한 질병 관련 유전자 추론 방법)

  • Kim, Jeongwoo;Kim, Hyunjin;Yeo, Yunku;Shin, Mincheol;Park, Sanghyun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2017
  • After the genome projects of the 90s, a vast number of gene studies have been stored in online databases. By using these databases, several biological relationships can be inferred. In this study, we proposed a method to infer disease-gene relationships using title and body in biomedical text. The title was used to extract hub genes from data in the literature; whereas, the body of the literature was used to extract sub genes that are related to hub genes. Through these steps, we were able to construct a local gene-network for each report in the literature. By integrating the local gene-networks, we then constructed a global gene-network. Subsequent analyses of the global gene-network allowed inference of disease-related genes with high rank. We validated the proposed method by comparing with previous methods. The results indicated that the proposed method is a meaningful approach to infer disease-related genes.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

Inferring candidate regulatory networks in human breast cancer cells

  • Jung, Ju-Hyun;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • v.2 no.1
    • /
    • pp.24-27
    • /
    • 2007
  • Human cell regulatory mechanism is one of suspicious problems among biologists. Here we tried to uncover the human breast cancer cell regulatory mechanism from gene expression data (Marc J. Van de vijver, et. al., 2002) using a module network algorithm which is suggested by Segal, et. al.(2003) Finally, we derived a module network which consists of 50 modules and 10 tree depths. Moreover, to validate this candidate network, we applied a GO enrichment test and known transcription factor-target relationships from Transfac(R) (V. Matys, et. al, 2006) and HPRD database (Peri, S. et al., 2003).

  • PDF

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis

  • Yue Hu;Jun Zhou
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.45.1-45.11
    • /
    • 2023
  • Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.

An integrated Bayesian network framework for reconstructing representative genetic regulatory networks.

  • Lee, Phil-Hyoun;Lee, Do-Heon;Lee, Kwang-Hyung
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.164-169
    • /
    • 2003
  • In this paper, we propose the integrated Bayesian network framework to reconstruct genetic regulatory networks from genome expression data. The proposed model overcomes the dimensionality problem of multivariate analysis by building coherent sub-networks from confined gene clusters and combining these networks via intermediary points. Gene Shaving algorithm is used to cluster genes that share a common function or co-regulation. Retrieved clusters incorporate prior biological knowledge such as Gene Ontology, pathway, and protein protein interaction information for extracting other related genes. With these extended gene list, system builds genetic sub-networks using Bayesian network with MDL score and Sparse Candidate algorithm. Identifying functional modules of genes is done by not only microarray data itself but also well-proved biological knowledge. This integrated approach can improve there liability of a network in that false relations due to the lack of data can be reduced. Another advantage is the decreased computational complexity by constrained gene sets. To evaluate the proposed system, S. Cerevisiae cell cycle data [1] is applied. The result analysis presents new hypotheses about novel genetic interactions as well as typical relationships known by previous researches [2].

  • PDF

Identification of prognosis-specific network and prediction for estrogen receptor-negative breast cancer using microarray data and PPI data (마이크로어레이 데이터와 PPI 데이터를 이용한 에스트로겐 수용체 음성 유방암 환자의 예후 특이 네트워크 식별 및 예후 예측)

  • Hwang, Youhyeon;Oh, Min;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.137-147
    • /
    • 2015
  • This study proposes an algorithm for predicting breast cancer prognosis based on genetic network. We identify prognosis-specific network using gene expression data and PPI(protein-protein interaction) data. To acquire the network, we calculate Pearson's correlation coefficient(PCC) between genes in all PPI pairs using gene expression data. We develop a prediction model for breast cancer patients with estrogen-receptor-negative using the network as a classifier. We compare classification performance of our algorithm with existing algorithms on independent data and shows our algorithm is improved. In addition, we make an functionality analysis on the genes in the prognosis-specific network using GO(Gene Ontology) enrichment validation.

The Construction of Regulatory Network for Insulin-Mediated Genes by Integrating Methods Based on Transcription Factor Binding Motifs and Gene Expression Variations

  • Jung, Hyeim;Han, Seonggyun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.13 no.3
    • /
    • pp.76-80
    • /
    • 2015
  • Type 2 diabetes mellitus is a complex metabolic disorder associated with multiple genetic, developmental and environmental factors. The recent advances in gene expression microarray technologies as well as network-based analysis methodologies provide groundbreaking opportunities to study type 2 diabetes mellitus. In the present study, we used previously published gene expression microarray datasets of human skeletal muscle samples collected from 20 insulin sensitive individuals before and after insulin treatment in order to construct insulin-mediated regulatory network. Based on a motif discovery method implemented by iRegulon, a Cytoscape app, we identified 25 candidate regulons, motifs of which were enriched among the promoters of 478 up-regulated genes and 82 down-regulated genes. We then looked for a hierarchical network of the candidate regulators, in such a way that the conditional combination of their expression changes may explain those of their target genes. Using Genomica, a software tool for regulatory network construction, we obtained a hierarchical network of eight regulons that were used to map insulin downstream signaling network. Taken together, the results illustrate the benefits of combining completely different methods such as motif-based regulatory factor discovery and expression level-based construction of regulatory network of their target genes in understanding insulin induced biological processes and signaling pathways.