• Title/Summary/Keyword: Gene mutation

Search Result 1,304, Processing Time 0.029 seconds

In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells (포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay)

  • 류재천;김경란;최윤정
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Mutation Analysis of Wilson Disease Gene: Arg778Leu Mutation in Korean Children (윌슨 유전자의 돌연변이 분석: 한국 윌슨병 환자에서의 Arg778Leu 돌연변이)

  • Seo, Jeong-Kee;Kim, Jong-Won
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.2 no.2
    • /
    • pp.164-168
    • /
    • 1999
  • Background: Wilson disease (WD) is an autosomal recessive disorder of copper transport and characterized by degenerative changes in the brain, liver dysfunction, and Kayser-Fleischer rings due to toxic accumulation of copper. Since the identification of Wilson disease gene (ATP7B), more than 80 mutations have been detected among the different ethnic groups. Methods: Twenty three children with Wilson disease were included in this study. They were all diagnosed by low serum ceruloplasmin and increased 24 hour urinary copper excretion with characteristic clinical findings. We analysed WD gene mutation by assessing the nucleotide sequence of exon 7, 8, 9 and 10 including intron-exon boundaries of ATP7B gene from genomic DNA. Results: Arg778Leu mutation was identified in 16 WD patients; three were homozygous and 13 were heterozygous for this mutation. Of the 46 alleles, 19 alleles had a Arg778Leu mutation (19/46=41%). Homozygote patients had neurologic forms of WD. Arg778Leu mutation was not found among 50 normal healthy persons. Conclusion: Arg778Leu mutation is a common mutation in Korean WD gene. Arg778Leu mutation screening might be used as a useful supplementary diagnostic test in some patients to confirm Wilson disease in Korea.

  • PDF

ON THE REPRESENTATION OF PROBABILITY VECTOR WITH SPECIAL DIFFUSION OPERATOR USING THE MUTATION AND GENE CONVERSION RATE

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • We will deal with an n locus model in which mutation and gene conversion are taken into consideration. Also random partitions of the number n determined by chromosomes with n loci should be investigated. The diffusion process describes the time evolution of distributions of the random partitions. In this paper, we find the probability of distribution of the diffusion process with special diffusion operator $L_1$ and we show that the average probability of genes at different loci on one chromosome can be described by the rate of gene frequency of mutation and gene conversion.

Comparative Study of p53 Mutation and Oncoprotein Expression in Gastric Adenocarcinoma (미세절편으로 얻은 위암 조직세포에서 p53 유전자의 돌연변이와 종양단백 발현에 관한 연구)

  • Kim Chul;Joo Jai Kyun;Choi Chan;Kim Young Jin
    • Journal of Gastric Cancer
    • /
    • v.3 no.3
    • /
    • pp.145-150
    • /
    • 2003
  • Purpose: The p53 tumor suppressor gene is believed to play a pivotal role in preventing the uncontrolled cellular growth characteristic of cancer. Mutation of the p53 gene represent one of the most common genetic alterations in human cancers, and the acquisition of such defects is strongly associated with tumor progression and metastasis. The aim of this study was to evaluate the relation between p53 immunoreactivity and the mutation of p53 gene in gastric adenocarcinoma obtained by laser capture microscope. Materials and Methods: Formalin fixed paraffin embedded tissue specimens were obtained from 20 patients who underwent surgery for gastric cancer. According to UICC TNM system, 3 of the cases were Ia, 2 cases II, 4 cases IIIa, 5 cases IIIb, and 6 cases IV. Results: Immunohistochemical staining revealed eight cases as negative (less than $10\%$), twelve cases as postive (more than $10\%$). The locations of mutations were as follows; 7 cases had point mutation at exon 4, and 3 cases point mutation at exon 8. There was no mutation at exon 5, 6, 7 and 9. The mutation was observed in 1 case out of 8 p53 oncoprotein negative cases, and 7 cases out of 12 p53 positive cases. The mutation was more common in p53 positive cases (P<0.05), However, there was no significant correlation between p53 mutation observed by DNA sequencing after laser capture microdissection and expression of p53 oncoprotein. Conclusion: These result suggest that he expression of p53 oncoprotein not to be related to the mutation of p53 gene at exons 4 through 9 in gastric cancer.

  • PDF

Colon Cancer Prevention by Detection of APC Gene Mutation in a Family with Attenuated Familial Adenomatous Polyposis

  • Poovorawan, Kittiyod;Suksawatamnuay, Sirinporn;Sahakitrungruang, Chucheep;Treeprasertsuk, Sombat;Wisedopas, Naruemon;Komolmit, Piyawat;Poovorawan, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5101-5104
    • /
    • 2012
  • Background: Genetic mutation is a significant factor in colon CA pathogenesis. Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary disease characterized by multiple colorectal adenomatous polyps affecting a number of cases in the family. This report focuses on a family with attenuated familial adenomatous polyposis (AFAP) with exon 4 mutation, c.481C>T p.Q161X of the APC gene. Methods: We analyzed 20 members of a family with AFAP. Clinical and endoscopic data were collected for phenotype determination. Genetic analysis was also performed by direct sequencing of the APC gene. Result: Five patients with a phenotype of AFAP were found. Endoscopic polyposis was demonstrated among the second generation with genotype mutation of the disease (age > 50 years) consistent with delayed phenotypic adenomatous polyposis in AFAP. APC gene mutation was identified in exon 4 of the APC gene, with mutation points of c.481C>T p.Q161X. Laparoscopic subtotal colectomy was performed to prevent carcinogenesis. Conclusion: A family with attenuated familial adenomatous polyposis of APC related to exon 4 mutation, c.481C>T p.Q161X, was reported and the phenotypic finding was confirmed by endoscopic examination. Genetic mutation analysis might be advantageous in AFAP for long term colon cancer prevention and management due to subtle or asymptomatic phenotype presentation in early adulthood.

Single Nucleotide Polymorphisms[SNPs] of DNA repair genes; hMLH1, hMSH2 and ATM in Healthy Korean (한국인에서의 DNA repair gene[hMLH1, hMSH2 및 ATM]의 Single Nucleotide Polymorphisms[SNPs]의 빈도)

  • 정현숙;김태연;조윤희;김양지;정해원
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Single nucleotide polymorphisms (SNPs) are alterations in DNA base that occur most frequently throughout the human genome. The SNPs of DNA repair genes, hMLH1, hMSH2 and ATM, among 100 Korean people were analyzed using Dynamic Allele specific Hybridization (DASH) techniques. Mutation at the position of exon 38 (GA) and exon 10 (CG) of ATM gene, mutation at the position of exon 8 (AG), and exon 1 (AG) of hMLH1 gene and exon 14 (AG) of hMSH2 gene were investigated. No mutation at the selected position of ATM gene and hMSH1 gene was found. However, while there was no mutation at the position of exon of hMSH2 gene, mutation was found at the promotion region (CT) with the frequency of 24% CC, 36% CT and 62% TT genotyes. This results might be used as baseline data for research on SNP of Korean population.

  • PDF

A Novel Argininosuccinate Synthetase Gene Mutation in a Korean Family with Type I Citrullinemia (Citrullinemia Type I 환자의 가족에서 발견된 새로운 Argininosuccinate Synthetase 유전자 돌연변이)

  • Ahn, Byoung-Whan;Kim, Hyun-Jeung;Park, Hyung-Doo;Kim, Won-Duck
    • Neonatal Medicine
    • /
    • v.17 no.2
    • /
    • pp.250-253
    • /
    • 2010
  • Citrullinemia type I is an urea cycle defect caused by mutations in the argininosuccinate synthetase (ASS1) gene. We report a novel argininosuccinate synthetase gene mutation in a Korean family with type I citrullinemia. Metabolic evaluation revealed significant hyperammonemia. Amino acid/acylcarnitine screening using tandem mass spectrometry showed high level of citrulline. Plasma amino acid analysis showed high level of citrulline and the urine organic acid analysis showed makedly increased level of orotic acid. To confirm diagnosis of citrullinemia we did mutation analysis of the ASS1 gene. The patient was found to have mutations of c.689G>C (p.G230A) and c.892G>A (p.E298K), which were new types of argininosuccinate synthetase gene mutation have never been reported in Korea. We report a novel case of argininosuccinate synthetase 1 gene mutation and suggest that the gene study to the family members is necessary to carry out when a patient is diagnosed as citrullinemia.

Early onset of colorectal cancer in a 13-year-old girl with Lynch syndrome

  • Ahn, Do Hee;Rho, Jung Hee;Tchah, Hann;Jeon, In-Sang
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.1
    • /
    • pp.40-42
    • /
    • 2016
  • Lynch syndrome is the most common inherited colon cancer syndrome. Patients with Lynch syndrome develop a range of cancers including colorectal cancer (CRC) and carry a mutation on one of the mismatched repair (MMR) genes. Although CRC usually occurs after the fourth decade in patients with Lynch syndrome harboring a heterozygous MMR gene mutation, it can occur in children with Lynch syndrome who have a compound heterozygous or homozygous MMR gene mutation. We report a case of CRC in a 13-year-old patient with Lynch syndrome and congenital heart disease. This patient had a heterozygous mutation in MLH1 (an MMR gene), but no compound MMR gene defects, and a K-RAS somatic mutation in the cancer cells.

Analysis of Follicle Stimulating Hormone Receptor Gene Mutation in Korean (한국인의 난포자극호르몬수용체 유전자변이에 대한 분석)

  • Nam, Y.S.;Kim, N.K.;Choi, M.J.;Park, S.H.;Chung, K.W.;Lee, S.H.;Yoon, T.K.;Cha, K.Y.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.3
    • /
    • pp.281-286
    • /
    • 1998
  • Premature ovarian failure is a condition causing amenorrhea, hypoestrogenism, and elevated gonadotropins in women younger than 40 years. Many causes of premature ovarian failure were reported, including genetic abnormalities, enzymatic defects, defects in gonadotropin secretion or action, autoimmune disorders, physical and idiopathic causes. Recently, Finnish group reported a point mutation in the follicle stimulating hormone (FSH) receptor gene in premature ovarian failure patients. But it was reported that the group from United States could not find any mutation in FSH receptor gene. So we analysed C566T point mutation of FSH receptor gene using restriction fragment length polymorphism (RFLP) and compared the result between premature ovarian failure patient with idiopathic and known causes. But we did not find 556C${\rightarrow}$T mutation in the FSH receptor gene in both groups. These findings suggest that the missense mutation in the human FSH receptor gene reported in Finnish women with premature ovarian failure is uncommon in Korean women with premature ovarian failure.

  • PDF

A novel homozygous mutation in SZT2 gene in Saudi family with developmental delay, macrocephaly and epilepsy

  • Naseer, Muhammad Imran;Alwasiyah, Mohammad Khalid;Abdulkareem, Angham Abdulrahman;Bajammal, Rayan Abdullah;Trujillo, Carlos;Abu-Elmagd, Muhammad;Jafri, Mohammad Alam;Chaudhary, Adeel G.;Al-Qahtani, Mohammad H.
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1149-1155
    • /
    • 2018
  • Epileptic encephalopathies are genetically heterogeneous disorders which leads to epilepsy and cause neurological disorders. Seizure threshold 2 (SZT2) gene located on chromosome 1p34.2 encodes protein mainly expressed predominantly in the parietal and frontal cortex and dorsal root ganglia in the brain. Previous studies in mice showed that mutation in this gene can confers low seizure threshold, enhance epileptogenesis and in human may leads to facial dysmorphism, intellectual disability, seizure and macrocephaly. Objective of this study was to find out novel gene or novel mutation related to the gene phenotype. We have identified a large consanguineous Saudi family segregating developmental delay, intellectual disability, epilepsy, high forehead and macrocephaly. Exome sequencing was performed in affected siblings of the family to study the novel mutation. Whole exome sequencing data analysis, confirmed by subsequent Sanger sequencing validation study. Our results showed a novel homozygous mutation (c.9368G>A) in a substitution of a conserved glycine residue into a glutamic acid in the exon 67 of SZT2 gene. The mutation was ruled out in 100 unrelated healthy controls. The missense variant has not yet been reported as pathogenic in literature or variant databases. In conclusion, the here detected homozygous SZT2 variant might be the causative mutation that further explain epilepsy and developmental delay in this Saudi family.