• 제목/요약/키워드: Gene mutagenesis

검색결과 232건 처리시간 0.027초

Identification of the Vibrio vulnificus fexA Gene and Evaluation of its Influence on Virulence

  • JU HYUN-MOK;HWANG IN-GYUN;WOO GUN-JO;KIM TAE SUNG;CHOI SANG HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1337-1345
    • /
    • 2005
  • Vibrio vulnificus is the causative agent of foodborne diseases such as gastroenteritis and life-threatening septicemia. Microbial pathogenicity is a complex phenomenon in which expression of numerous virulence factors is frequently controlled by a common regulatory system. In the present study, a mutant exhibiting decreased cytotoxic activity toward intestinal epithelial cells was screened from a library of V. vulnificus mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, an open reading frame, fexA, a homologue of Escherichia coli areA, was identified and cloned. The nucleotide and deduced amino acid sequences of the fexA were analyzed, and the amino acid sequence of FexA from V. vulnificus was $84\%\;to\;97\%$ similar to those of AreA, an aerobic respiration control global regulator, from other Enterobacteriaceae. Functions of the FexA were assessed by the construction of an isogenic mutant, whose fexA gene was inactivated by allelic exchanges, and by evaluating its phenotype changes in vitro and in mice. The disruption of fexA resulted in a significant alteration in growth rate under aerobic as well as anaerobic conditions. When compared to the wild-type, the fexA mutant exhibited a substantial decrease in motility and cytotoxicity toward intestinal epithelial cell lines in vitro. Furthermore, the intraperitoneal $LD_{50}$ of the fexA mutant was approximately $10^{1}-10^{2}$ times higher than that of parental wild-type. Therefore, it appears that FexA is a novel global regulator controlling numerous genes and contributing to the pathogenesis as well as growth of V. vulnificus.

Secretory Expression, Functional Characterization, and Molecular Genetic Analysis of Novel Halo-Solvent-Tolerant Protease from Bacillus gibsonii

  • Deng, Aihua;Zhang, Guoqiang;Shi, Nana;Wu, Jie;Lu, Fuping;Wen, Tingyi
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.197-208
    • /
    • 2014
  • A novel protease gene from Bacillus gibsonii, aprBG, was cloned, expressed in B. subtilis, and characterized. High-level expression of aprBG was achieved in the recombinant strain when a junction was present between the promoter and the target gene. The purified recombinant enzyme exhibited similar N-terminal sequences and catalytic properties to the native enzyme, including high affinity and hydrolytic efficiency toward various substrates and a superior performance when exposed to various metal ions, surfactants, oxidants, and commercial detergents. AprBG was remarkably stable in 50% organic solvents and retained 100% activity and stability in 0-4 M NaCl, which is better than the characteristics of previously reported proteases. AprBG was most closely related to the high-alkaline proteases of the subtilisin family with a 57-68% identity. The secretion and maturation mechanism of AprBG was dependent on the enzyme activity, as analyzed by site-directed mutagenesis. Thus, when taken together, the results revealed that the halo-solvent-tolerant protease AprBG displays significant activity and stability under various extreme conditions, indicating its potential for use in many biotechnology applications.

${\alpha}-Amylase$ 고생산성 Bacillus licheniformis 변이주의 개발과 특성 분석 (Development of an ${\alpha}-amylase-hyperproducing$ mutant of Bacillus licheniformis and its characteristics)

  • 정허진;정경화;장종수;윤기흥;박승환;김훈
    • Applied Biological Chemistry
    • /
    • 제41권1호
    • /
    • pp.18-22
    • /
    • 1998
  • Bacillus licheniformis를 화학적 돌연변이를 시켜 내열성 ${\alpha}-amylase$ 고생산성 변이주 SK-5를 얻었다. 변이주는 모균에 비하여 약 50배 정도의 ${\alpha}-amylase$를 생산하였으며, 그 모양이 가늘고 길이가 길어졌고, 성장속도가 감소되었다. 이 효소의 유전적 변화를 분석하기 위하여 변이주 SK-5로부터 ${\alpha}-amylase$ 유전자 염기배열을 결정한 결과 구조유전자의 염기배열은 동일하였으나 promoter 지역에서 일부 변이가 일어난 것이 확인되어 이것이 부분적으로 효소생산성 증가에 영향을 미칠 것으로 여겨진다. SK-5의 ${\alpha}-amylase$ 생산성이 높기 때문에 이의 배양상층액으로부터 열처리와 황산암모늄 침전 후 한 단계의 hydroxyapatite 컬럼을 사용하여 순수하게 정제된 ${\alpha}-amylase$를 얻을 수 있었다. 변이에 따른 세포외 단백질분해효소의 영향을 검증하기 위하여 SK-5 배양액을 시간별로 준비하여 Western blot으로 분석한 결과 변이주에서 분비되는 ${\alpha}-amylase$의 구조에 변화가 없음을 확인하였다.

  • PDF

Fine localization of a new cataract locus, Kec, on mouse chromosome 14 and exclusion of candidate genes as the gene that causes cataract in the Kec mouse

  • Kang, Min-Ji;Cho, Jae-Woo;Kim, Jeong-Ki;Kim, Eun-Min;Kim, Jae-Young;Cho, Kyu-Hyuk;Song, Chang-Woo;KimYoon, Sun-Joo
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.651-656
    • /
    • 2008
  • A mouse with cataract, Kec, was generated from N-ethyl-N-nitrosourea (ENU) mutagenesis. Cataract in the Kec mouse was observable at about 5 weeks after birth and this gradually progressed to become completely opaque by 12 weeks. Dissection microscopy revealed that vacuoles with a radial or irregular shape were located primarily in the cortex of the posterior and equatorial regions of the lens. At the late stage, the lens structure was distorted, but not ruptured. This cataract phenotype was inherited in an autosomal recessive manner. We performed a genetic linkage analysis using 133 mutant and 67 normal mice produced by mating Kec mutant (BALB/c) and F1 (C57BL/6 $\times$ Kec) mice. The Kec locus was mapped to the 3 cM region encompassed by D14Mit34 and D14Mit69. In addition we excluded coding sequences of 9 genes including Rcbtb2, P2ry5, Itm2b, Med4, Nudt15, Esd, Lcp1, Slc25a30, and 2810032E02Rik as the candidate gene that causes cataract in the Kec mouse.

RAD2 and PUF4 Regulate Nucleotide Metabolism Related Genes, HPT1 and URA3

  • Yu, Sung-Lim;Lim, Hyun-Sook;Kang, Mi-Sun;Kim, Mai Huynh;Kang, Dong-Chul;Lee, Sung-Keun
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.338-347
    • /
    • 2008
  • Yeast RAD2, a yeast homolog of human XPG gene, is an essential element of nucleotide excision repair (NER), and its deletion confers UV sensitivity and NER deficiency. 6-Azauracil (6AU) sensitivity of certain rad2 mutants revealed that RAD2 has transcription elongation function. However, the fundamental mechanism by which the rad2 mutations confer 6AU sensitivity was not clearly elucidated yet. Using an insertional mutagenesis, PUF4 gene encoding a yeast pumilio protein was identified as a deletion suppressor of rad2${\Delta}$ 6AU sensitivity. Microarray analysis followed by confirmatory RT-qPCR disclosed that RAD2 and PUF4 regulated expression of HPT1 and URA3. Overexpression of HPT1 and URA3 rescued the 6AU sensitivity of rad2${\Delta}$ and puf4${\Delta}$ mutants. These results indicate that 6AU sensitivity of rad2 mutants is in part ascribed to impaired expression regulation of genes in the nucleotide metabolism. Based on the results, the possible connection between impaired transcription elongation function of RAD2/XPG and Cockayne syndrome via PUF4 is discussed.

Defining the N-Linked Glycosylation Site of Hantaan Virus Envelope Glycoproteins Essential for Cell Fusion

  • Zheng, Feng;Ma, Lixian;Shao, Lihua;Wang, Gang;Chen, Fengzhe;Zhang, Ying;Yang, Song
    • Journal of Microbiology
    • /
    • 제45권1호
    • /
    • pp.41-47
    • /
    • 2007
  • The Hantaan virus (HTNV) is an enveloped virus that is capable of inducing low pH-dependent cell fusion. We molecularly cloned the viral glycoprotein (GP) and nucleocapsid (NP) cDNA of HTNV and expressed them in Vero E6 cells under the control of a CMV promoter. The viral gene expression was assessed using an indirect immunofluorescence assay and immunoprecipitation. The transfected Vero E6 cells expressing GPs, but not those expressing NP, fused and formed a syncytium following exposure to a low pH. Monoclonal antibodies (MAbs) against envelope GPs inhibited cell fusion, whereas MAbs against NP did not. We also investigated the N-linked glycosylation of HTNV GPs and its role in cell fusion. The envelope GPs of HTNV are modified by N-linked glycosylation at five sites: four sites on G1 (N134, N235, N347, and N399) and one site on G2 (N928). Site-directed mutagenesis was used to construct eight GP gene mutants, including five single N-glycosylation site mutants and three double-site mutants, which were then expressed in Vero E6 cells. The oligosaccharide chain on residue N928 of G2 was found to be crucial for cell fusion after exposure to a low pH. These results suggest that G2 is likely to be the fusion protein of HTNV.

Role of eptC in Biofilm Formation by Campylobacter jejuni NCTC11168 on Polystyrene and Glass Surfaces

  • Lim, Eun Seob;Kim, Joo-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1609-1616
    • /
    • 2017
  • The complex roles of cell surface modification in the biofilm formation of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are poorly understood. In a screen of mutants from random transposon mutagenesis, an insertional mutation in the eptC gene (cj0256) resulted in a significant decrease in C. jejuni NCTC11168 biofilm formation (<20%) on major food contact surfaces, such as polystyrene and borosilicate glass, when compared with wild-type cells (p < 0.05). In C. jejuni strain 81-176, the protein encoded by eptC modified cell surface structures, such as lipid A, the inner core of lipooligosaccharide, and the flagellar rod protein (FlgG), by attaching phosphoethanolamine. To assess the role of eptC in C. jejuni NCTC11168, adherence and motility tests were performed. In adhesion assays with glass surfaces, the eptC mutant exhibited a $0.77log\;CFU/cm^2$ decrease in adherence compared with wild-type cells during the initial 2 h of the assay (p < 0.05). These results support the hypothesis that the modification of cell surface structures by eptC affects the initial adherence in biofilm formation of C. jejuni NCTC11168. In motility tests, the eptC mutant demonstrated reduced motility when compared with wild-type cells, but wild-type cells with the transposon inserted in a gene irrelevant to biofilm formation (cj1111c) also exhibited decreased motility to a similar extent as the eptC mutant. This suggests that although eptC affects motility, it does not significantly affect biofilm formation. This study demonstrates that eptC is essential for initial adherence, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

Two Enteropathogenic Escherichia coli Strains Representing Novel Serotypes and Investigation of Their Roles in Adhesion

  • Wang, Jing;Jiao, HongBo;Zhang, XinFeng;Zhang, YuanQing;Sun, Na;Yang, Ying;Wei, Yi;Hu, Bin;Guo, Xi
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1191-1199
    • /
    • 2021
  • Enteropathogenic Escherichia coli (EPEC), which belongs to the attaching and effacing diarrheagenic E. coli strains, is a major causative agent of life-threatening diarrhea in infants in developing countries. Most EPEC isolates correspond to certain O serotypes; however, many strains are non-typeable. Two EPEC strains, EPEC001 and EPEC080, which could not be serotyped during routine detection, were isolated. In this study, we conducted an in-depth characterization of their putative O-antigen gene clusters (O-AGCs) and also performed constructed mutagenesis of the O-AGCs for functional analysis of O-antigen (OAg) synthesis. Sequence analysis revealed that the occurrence of O-AGCs in EPEC001 and E. coli O132 may be mediated by recombination between them, and EPEC080 and E. coli O2/O50 might acquire each O-AGC from uncommon ancestors. We also indicated that OAg-knockout bacteria were highly adhesive in vitro, except for the EPEC001 wzy derivative, whose adherent capability was less than that of its wild-type strain, providing direct evidence that OAg plays a key role in EPEC pathogenesis. Together, we identified two EPEC O serotypes in silico and experimentally, and we also studied the adherent capabilities of their OAgs, which highlighted the fundamental and pathogenic role of OAg in EPEC.

Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase

  • Bashyal, Narayan;Lee, Tae-Young;Chang, Da-Young;Jung, Jin-Hwa;Kim, Min Gyeong;Acharya, Rakshya;Kim, Sung-Soo;Oh, Il-Hoan;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.479-494
    • /
    • 2022
  • Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.

Rice genes specifically expressed in a rice mutant gained resistance to rice blast.(oral)

  • C. U. Han;Lee, C. H.;K. S. Jang;Park, Y. H.;H. K. Lim;Kim, J.C.;Park, G. J.;J.S. Cha;Park, J. E.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.66.2-66
    • /
    • 2003
  • A gain-of-function mutant, SHM-11 obtained through gamma-ray mutagenesis, is resistant to rice blast caused by Magnaporthe grisea while wild type Sanghaehyanghyella is highly susceptible to the same disease. The resistance in the mutant was not race-specific when we tested with four races (KJ-201, KI-1113a, KI-313, KI-409) of M. grisea. To identify genes involved disease resistance in the gain-of-function mutant, genes specifically expressed in the mutant were selected by suppression subtractive hybridization using cDNAS of blast-inoculated mutant and wild type as a tester and a driver, respectively, Random 200 clones from the subtracted library were selected and analyzed by DNA sequencing. The sequenced genes represented three major groups related with disease resistance; genes encoding PR proteins, genes probably for phytoalexin biosynthesis, and genes involved in disease resistance signal transduction. A gene encoding a putative receptor-like protein kinase was identified as highly expressed only in the gain-of-function mutant after blast infection. The role of the putative receptor-like protein kinase gene during blast resistance will be further studied.

  • PDF