• Title/Summary/Keyword: Gene effects

Search Result 3,479, Processing Time 0.046 seconds

Enhanced biological effect of fermented soy-powder milk with Lactobacillus brevis increasing in γ-aminobutyric acid and isoflavone aglycone contents (가바와 비당체 이소플라본이 증가된 Lactobacillus brevis 발효 콩-분말 두유의 생리활성 증진 효과)

  • Hwang, Chung Eun;Kim, Su Cheol;Lee, Jin Hwan;Hong, Su Young;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.245-255
    • /
    • 2018
  • The research was aimed to analyze the functional constituents (GABA and isoflavone), radical (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl) scavenging activities and enzyme (${\alpha}-glucosidase$ and lipase) inhibitory effects of soypowder milk (SPM) and fermented soy-powder milk (FSPM) with varied Lactobacillus brevis. Ten ${\gamma}-aminobutyric$ acid (GABA) producing lactic acid bacteria that showed 96-99% similarity with L. brevis, according to 16S rRNA gene sequence analysis, were isolated from fermented kimchi. The conversion rates of GABA were obtained 66.96-93.51, 63.76-84.58, and 57.05-69.75% in monosodium glutamate, gluten and soy protein, respectively. The levels of pH and glutamic acid of FSPM were found lower than those of SPM, but the acidity and GABA contents were higher. The GABA conversion rate of FSPM with BMK484 strain was attained the highest 69.97%. The contents of isoflavone glycoside ($1290.93{\mu}g/g$) was higher in SPM, but the content of isoflavone aglycone ($287.27-501.9{\mu}g/g$) was higher in FSPM. The levels of isoflavone aglycone such as daidzein, glycitein and genistein, were found as the highest 240.2, 61.24 and $200.45{\mu}g/g$, respectively, when FSPM was made with BMK484 strain. The DPPH, ABTS and hydroxyl radical scavenging and ${\alpha}-glucosidase$ and pancreatic lipase inhibitory activities of FSPM made with BMK484 strain were the relatively higher 60.31, 88.10, 61.25, 52.71, and 39.37%, respectively. Therefore, the L. brevis can be used as a material capable of simultaneously enhanced GABA and isoflavone aglycone in FSPM.

Production of Ginsenoside in the Hairy Roots Irradiated by 60Co γ on Panax ginseng C.A Meyer (60Co γ 를 조사한 인삼모상근 돌연변이 세포주의 생장과 Ginsenoside의 생산)

  • Choi, Kyu-Myoung;Kwon, Jung-Hee;Ban, Sung-Hee;Yang, Deok-Cho
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.219-225
    • /
    • 2002
  • Study was performed to know the effects of Panax ginseng C.A. Meyer hairy root due to $^{60}$ Co ${\gamma}$-ray irradiation. We irradiated the hairy roots under the various $^{60}$ Co ${\gamma}$-ray; 0.5~4 Krad. The growth of hairy roots is inhibited over 3 Krad treatment. The lateral roots are used as a cell line after removing the apical meristem of hairy roots irradiated below 2 Krad. We selected 206 hairy root cell lines having various different growth rates and forms, and incubated in the 1/2 Murashige & Skoog(MS) medium in the absence of hormone. We selected 10 out of 206 showing superior growth. Among those, ${\gamma}$-GHR 70 and ${\gamma}$-GHR 94 showed higher growth; 34.5, 44.7%, respectively. We observed shapable, sizable characteristics according to the width of the primary roots, the process formation of the lateral roots, and the growth of lateral roots. The discriminable cell line showed that primary root is thinner, and has a vigorous growth. 8 out of 10 had much more contents than control in the aspect of the ginsenoside. ${\gamma}$-GHR 59 and ${\gamma}$-GHR 94 showed higher contents; 19, 16.9%, respectively. Therefore, we selected ${\gamma}$-GHR 70, ${\gamma}$-GHR 94 as a superior cell line in the aspect of ginsenoside contents, and growth among those irradiated by ${\gamma}$-ray. According to content of ginsenoside, Rb$_2$ effective in anticancer has 7.5% of ${\gamma}$-GHR 59. Rc, also effective in anticancer showed 16.2% content increasement of ${\gamma}$-GHR 69. It is thought that those lines will be effective in manufacturing ginsenoside. Gene analysis (VNTRP) related to the mutation is in progress.

Effects of Ulmus davidiana Planch(Ulmaceae) on mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen and collagennase-1 in bone cells (유근피가 골세포의 mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen 및 collagennase-1에 미치는 영향)

  • Byun, You-seok;Yoon, Jong-hwa;Hwang, Min-seob;Kim, Kap-sung;Jo, Hyun-seog
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.13-22
    • /
    • 2005
  • By extracting the sample of Ulmus davidiana Planch(Ulmaceae), which was known to have the protection of damaged organ and the anti-inflammation action, it was experimented whether it is available for the application of treatment of osteoporosis. In the previous experiment, the extracts from Ulmus davidiana Planch(Ulmaceae) were confirmed to inhibit Cathepsin K through treating the cell of long bone, which contains osteoclast. Through this, it is suggested that Ulmus davidiana Planch(Ulmaceae) can play a role of prodrug as an inhibitor of absorbing bone ash in the treatment of osteoporosis. In the present experiment, a research in vitro Ulmus davidiana Planch(Ulmaceae) on the growth and sensibilization of osteoblast in a state that induced osteosis by using the cell tissue of MC3T3-El pre-osteoblastic was conducted. As a result, it could be confirmed that Ulmus davidiana Planch(Ulmaceae) has the strengthening function by enhancing the dosage and the activity of ALP depending on the time. The dosage was observed at the minimum of $50{\mu}g/m{\ell}$ and the maximum of $150{\mu}g/m{\ell}$. The enhancement in bone morphogenetic protein-2 at $100{\mu}g/m{\ell}$ UD could be observed, and it also increased the concentration of ALP mRNA within the cell of MC3T3-El. At $60{\mu}g/m{\ell}$ UD which indicated a little increase in Type I collagen mRNA for a long time of culture. However, it was shown to sharply inhibit the expression of gene in the culture between 15-20 days. These results suggest that Ulmus davidiana Planch(Ulmaceae) has an influence upon bone metabolism through thje sensibilization of osteoblast. Therefore, it could be known that utilized Ulmus davidiana Planch(Ulmaceae) can be positively applied for the general disease of bone metabolism through future studies.

  • PDF

The effects of enamel matrix derivatives on the proliferation and gene expression of PDL fibroblast, $SaOs_2$ cells and Cementum derived cells (법랑기질유도체가 치주인대세포, 불멸화 조골세포, 백악질 유래세포의 증식과 유전자 발현에 미치는 영향)

  • Jeong, Yoo-Jee;Kim, Kyoung-Hwa;Kim, Tae-Il;Seol, Yang-Jo;Ku, Young;Lee, Hae-Jun;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.321-333
    • /
    • 2005
  • 1. 목적 in vitro 상에서 법랑기질유도체가 치주인대섬유아세포, 불멸화 조골세포와 백악질 유래세포의 증식과 유전자 발현에 미치는 영향을 알아보고자 하였다. 2. 연구방법 및 재료 <세포증식 연구> 교정을 목적으로 발거한 치아에서 분리, 배양한 치주인대섬유아세포와 백악질유래세포, 그리고 $SaOs_2$ 세포를 이용하였다. 법랑기질유도체가 세포 증식에 미치는 영향을 알아보기 위해, 35 mm Petri dish에 dish 당 $5{\times}10^3$ 개의 세포를 접종하였다. 대조군은 1% 항생제와 10% FBS를 포함한 DMEM 배지를 이용했고, 5mM 초산을 첨가한 군과 첨가하지 않은 두 개의 대조군이 이용되었다. 실험군은 100 ${\mu}g/ml$의 법랑기질유도제를 첨가한 군과 100 ${\mu}g/ml$의 법랑기질유도체와 5 mM의 초산을 첨가한 2개의 실험군이 이용되었다. 각 군은 세 개의 배양접시에 행해졌고, 1, 3, 8일에 세포의 수를 각각 측정하였다. 결과는 repeated measures ANOVA로 통계 처리하였다. <유전자 발현 연구> 각 세포의 형질 특성을 알아보기 위해 RT-PCR을 실시하여 조골세포 분화 표식자와 연관된 Human collagen type I(COL I), human osteopontin(OP), human osteocalcin(OC), human alkaline phosphatase(ALP)와 human bone sialoprotein(BSP)의 mRNA 발현을 실험 1, 3, 8일에 걸쳐, 세 군의 차이를 비교 관찰하였다. 3. 결과 <세포증식 연구> 치주인대세포와 백악질유래세포, 그리고 $SaOs_2$ 세포의 증식은 법랑기질유도체에 의해 영향을 받지 않았다. 대조군과 초산이 포함된 대조군 그리고 법랑기질유도체와 초산이 포함된 실험군에서 유의할 만한 세포 수의 차이가 실험 기간 1, 3, 8일에 걸쳐 나타나지 않았다(p<0.05). <유전자 발현 연구> ALP와 COL I은 세 군의 세포에서 모두 발현되었고, 발현 정도는 EMD에 영향을 받지 않았다. OC은 세 군에서 모두 비교적 약하게 발현되었고, 특히 $SaOs_2$ cell과 백악질유래세포에서 약하게 발현되었다. EMD는 OC의 발현정도를 약하게 하였다. OP은 백악질유래세포에서 1, 3, 8일에 걸쳐 EMD 유무에 관련 없이 발현되지 않았다. 그러나 치주인대세포와 $SaOs_2$ cell에서는 강하게 발현되었다. BSP는 치주인대세포와 $SaOs_2$ cell에서 1, 3, 8일에 걸쳐 비교적 고르게 발현되었다. EMD 배지에서 배양된 백악질유래세포는 8일에는 BSP가 발현되지 않았다. 4 결론 이번 실험 결과에 의하면 법랑기질유도체는 치주인대세포, 불멸화 조골세포와 백악질 유래세포의 증식에 있어 유의성 있는 효과를 나타내지 않았다. 그러나, 유전자 발현에 있어서는, 치주인대세포와 백악질유래세포, 그리고 $SaOs_2$ 세포 모두에서 OC mRNA의 발현을 억제하는 효과를 나타내었다. EMD는 세포의 증식에는 영향을 미치지 않지만, 유전자 발현에 있어 일부 영향을 미치는 것으로 보인다. 법랑기질유도체가 세포의 증식과 유전자 발현에 미치는 영향은 배양된 세포의 형질특성, 배양환경, 배양일수 등에 따라 달라질 수 있다. 그러므로 법랑기질유도체가 in vitro 상에서 세포에 미치는 영향은 보다 정량화된 연구가 필요하다.

Effects of High Stocking Density on the Expressions of Stress and Lipid Metabolism Associated Genes in the Liver of Chicken (닭의 고밀도 사양체계가 스트레스 및 지방대사 연관 유전자 발현에 미치는 영향)

  • An, Young Sook;Park, Jeong Geun;Jang, In Surk;Sohn, Sea Hwan;Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1672-1679
    • /
    • 2012
  • The effect of high stocking density (HSD) on the expression of stress and lipid metabolism associated genes in the liver of broiler chickens was examined by chicken genome array analysis. The chickens in a control group were randomly assigned to a $495cm^2/bird$ stocking density, whereas the chickens in a HSD group were arranged in a $245cm^2/bird$ stocking density with feeding ad libitum for 35 days. The chickens assigned to the HSD group had a significantly lower body weight, weight gain, and feed intake compared with those of the control group (p<0.05). The mortality of chickens was higher in the HSD group than in the control group. The microarray analysis indicated up-regulation of stress associated genes such as HMGCR, $HSP90{\alpha}$, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, and down-regulation of interferon-${\gamma}$ and PDCD4 genes. The endoplasmic reticulum stress associated genes, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, were highly expressed in the HSD group. The genes, ACSL5, TMEM195 and ELOVL6, involved in fatty acid synthesis, were elevated in the HSD group. The genes, ACAA1, ACOX1, EHHADH, LOC423347 and CPT1A, related to fatty acid oxidation, were also activated in the HSD group. These results suggest that a HSD rearing system stimulates the genes associated with fatty acid synthesis as well as fatty acid oxidation in the liver of broiler chickens.

Physiological and Proteome Responses of Korean F1 maize (Zea mays L.) Hybrids to Water-deficit Stress during Tassel Initiation (옥수수 영양생장기 한발 스트레스에 의한 광합성의 생리적 반응 및 프로테옴 변화 분석)

  • Bae, Hwan Hee;Kwon, Young-Sang;Son, Beom-Young;Kim, Jung-Tae;Go, Young Sam;Kim, Sun-Lim;Baek, Seong-Bum;Shin, Seonghyu;Kim, Sang Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.422-431
    • /
    • 2019
  • Severe droughts in spring have occurred frequently in Korea in recent years, exerting a critical impact on corn yield. Therefore, it is necessary to find physiological and/or molecular indicators of the response to drought stress in maize plants. In this study, we investigated the effects of water-deficit stress on two Korean elite F1 maize hybrids, Ilmichal and Gwangpyeongok, by withholding water for 10 days at tassel initiation. The water deficit drastically reduced the relative leaf water content, leaf number, leaf area, and stem length, leading to dry matter reduction. Moreover, it reduced the SPAD values and stomatal conductance of leaves in drought-stressed plants of both hybrids. Importantly, the number of leaves and SPAD value were non-destructive and easy to investigate in response to water-deficit stress, suggesting that they may be useful indicators for screening drought-tolerant genetic resources. We detected more than 100 spots that were differentially accumulated under drought stress. Of these spots, a total of 21 protein spots (≥1.5-fold) from drought-exposed maize leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Functional annotation using Gene Ontology analysis revealed that most of the identified proteins were involved in carbohydrate metabolism, stress response fatty acid catabolism, photosynthesis, energy metabolism, and transport. The protein expression levels were increased in both Ilmichal and Gwangpyeongok, except for triosephosphate isomerase, fructose-bisphosphate aldolase, and an uncharacterized protein. The lactoylglutathione lyase delta (3,5)-delta (2,4)-dienoyl-CoA isomerase was overexpressed in Gwangpyeongok only. The results obtained from this study suggest that the drought-specific genes may be useful as molecular markers for screening drought-tolerant maize genotypes.

Insulin-Like Growth Factor-I Induces Androgen Receptor Coactivator Expression in Skeletal Muscle Cells through the p38 MAPK and ERK1/2 Pathways (C2C12 세포에서 insulin-like growth factor-I이 p38 MAPK, ERK1/2 신호전달 경로를 통해 엔드로젠 수용체 coactivator 발현에 미치는 영향)

  • Park, Chan-Ho;Kim, Hye-Jin;Kim, Tae-Un;Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.242-250
    • /
    • 2011
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) coactivators are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR coactivators and IGF-I in skeletal muscle cells has not been previously examined. In this study, the effects of IGF-I treatment on the gene expression of AR coactivators in the absence of AR ligands and the roles of the p38 MAPK and ERK1/2 signaling pathways in IGF-I-induced AR coactivators induction were examined. C2C12 cells were treated with 250 ng/ml of IGF-I in the presence or absence of specific inhibitors p38 MAPK (SB203580) or ERK1/2 (PD98059). Treatment of C2C12 cells with IGF-I resulted in increased in GRIP-1, SRC-1, and ARA70 protein expression. The levels of GRIP-1, SRC-1, and ARA70 mRNA were also significantly increased after 5min of IGF-I treatment. IGF-I-induced AR coactivator proteins were significantly blocked by pharmacological inhibitors of p38 MAPK and ERK1/2 pathways. However, there was no significant effect of those inhibitors on IGF-I-induced mRNA level of AR coactivators, suggesting that AR coactivators are post-transcriptionally regulated by IGF-I. Furthermore, the present results suggest that IGF-I stimulates the expression of AR coactivators by cooperative activation of the p38 MAPK and ERK1/2 pathways in C2C12 mouse skeletal muscle cells.

Isolation and Characterization of a Marine Bacterium, Pseudomonas sp. YJ-1 with Anti-Methicillin Resistant Staphylococcus aureus Activity (항 Methicillin Resistant Staphylococcus aureus 활성을 가지는 해양미생물 Pseudomonas sp. YJ-1의 분리와 특성)

  • Woo, Ye-Ju;Jeong, Seong-Yun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.694-705
    • /
    • 2017
  • The aim of this study was to isolate and identify marine bacterium with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and to purify the anti-MRSA compound, as well as to determine its activity and synergistic effects. Among the marine bacteria isolated in this study, the YJ-1 isolate had the strongest anti-MRSA activity. The YJ-1 isolate was identified on the basis of its biochemical characteristics and an analysis of 16S rRNA gene sequences. The YJ-1 isolate showed over 99.2% homology with Pseudomonas stutzeri, and was designated as a Pseudomonas sp. YJ-1. The optimal culture conditions were $25^{\circ}C$ and initial pH 7.0. For the purification of the anti-MRSA compounds, the YJ-1 was cultured in Pa PES-II medium, and the culture filtrates were extracted by ethyl acetate, hexane, and 80% MeOH. The 80% MeOH fraction was separated by a $C_{18}$ ODS column, silica gel chromatography and a reverse phase HPLC, to yield three anti-MRSA agents, the MR1, MR2, and MR3 compounds. When the MR1 compound of $250{\mu}g\;mL^{-1}$ concentration was applied to the MRSA cells, over 95% of bacterial cells was killed within 48 hr. Compared with vancomycin and ampicillin, the MR1 compound showed significant anti-MRSA activity. In addition, the anti-MRSA activity was increased by dose and time dependent manners. Furthermore, the combination of an MR1 compound with vancomycin produced a more rapid decrease in the MRSA cells than did the MR1 compound alone. Taken together, our results suggest that the Pseudomonas sp. YJ-1 and its anti-MRSA compounds could be employed as a natural antibacterial agent in MRSA infections.

Plant Growth Promoting Effect and Antifungal Activity of Bacillus subtilis S37-2 (Bacillus subtilis S37-2 균주의 항진균활성 및 식물생육촉진 효과)

  • Kwon, Jang-Sik;Weon, Hang-Yeon;Suh, Jang-Sun;Kim, Wan-Gyu;Jang, Kab-Yeul;Noh, Hyung-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.447-453
    • /
    • 2007
  • With a broad objective for the development of microbial based fertilizers, a total of 373 strains were isolated from rhizoplane and rhizosphere of pepper, tomato, lettuce, pasture, and grass. The efficacy of the isolates to augument overall plant growth was evaluated. After screening for their plant growth promotion and antagonistic properties in vitro efficient strains were further selected. The most efficient strains was characterized by 16S rRNA gene sequences and biochemical techniques and was designated as Bacillus subtilis S37-2. The strains facilitated plant growth and inhibited the plant phathogenic fungi such as Fusarium oxysporum (KACC 40037, Rhizoctonia solani (KACC 40140), and Sclerotinia sclerotiorum (KACC 40457). Pot based bioassay using lettuce as test plant was conducted by inoculating suspension ($10^5$ to $10^8cells\;mL^{-1}$) of B. subtilis S37-2 to the rhizosphere of lettuce cultivated in soil pots. Compared with non-inoculated pots, marked increase in leaf (42.3%) and root mass (48.7%) was observed in the inoculation group where the 50ml of cell mixture ($8.7{\times}10^8cells\;ml^{-1}$) was applied to the rhizosphere of letuce either once or twice. Antagonistic effects of B. subtilis S37-2 strain on S. sclerotiorum (KACC 40457) were tested. All the tested lettuce plants perished after 9 days in treatment containing only S. sclerotiorum, but only 17% of lettuce was perished in the inoculation plot. B. subtilis grew well in the TSB culture medium. The isolates grew better in yeast extracts than peptone and tryptone as nitrogen source. The growth rate was 2~4 times greater at $37^{\circ}C$ as compared with $30^{\circ}C$ incubation temperature. B. subitlis S37-2 produced $0.1{\mu}g\;ml^{-1}$ of IAA (indole 3-acetic acid) in the TSB medium containing L-tryptophan($20mg\;L^{-1}$) in 24 hours.

Anti-inflammatory Activities of Antimicrobial Peptide Locustacin Derived from Locusta migratoria in LPS-stimulated RAW264.7 Cells (풀무치 유래 항균 펩타이드 locustacin의 항염증 활성)

  • Choi, Ra-Yeong;Lee, Joon Ha;Seo, Minchul;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.898-904
    • /
    • 2021
  • Locusta migratoria is a widespread locust species in many parts of the world and is considered an alternative source for the production of protein for value-added ingredients. We previously identified putative antimicrobial peptides derived from L. migratoria through an in silico analysis of its transcriptome. However, its anti-inflammatory effect has not been studied. In this study, we investigated the anti-inflammatory activities of the antimicrobial peptide locustacin (KTHILSFFPSFLPLFLKK-NH2) derived from L. migratoria on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Locustacin (50, 100, and 200 ㎍/ml) significantly reduced the production of nitric oxide (NO) in LPS-stimulated macrophages without any cytotoxicity. Locustacin also inhibited the mRNA and protein expression of pro-inflammatory mediators, such as inducible NO synthase and cyclooxygenase-2, in contrast to the presence of LPS alone. Locustacin decreased the release of LPS-induced pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, and their gene expression in a dose-dependent manner. Furthermore, locustacin (100 and/or 200 ㎍/ml) inhibited phosphorylation levels of extracellular signal regulated kinase, p38, and c-Jun N-terminal kinase. Locustacin also suppressed the degradation of inhibitory kappa B alpha, which was considered to be an inhibitor of nuclear factor kappa B (NF-κB). Collectively, these results demonstrate that locustacin can exert anti-inflammatory effects through the inhibition of mitogen-activated protein kinase (MAPK) phosphorylation, activation of NF-κB, and downstream inflammatory mediators in LPS-stimulated macrophage cells.