Plant Growth Promoting Effect and Antifungal Activity of Bacillus subtilis S37-2

Bacillus subtilis S37-2 균주의 항진균활성 및 식물생육촉진 효과

  • Kwon, Jang-Sik (National Institute of Agricultural Science and Technology) ;
  • Weon, Hang-Yeon (National Institute of Agricultural Science and Technology) ;
  • Suh, Jang-Sun (National Institute of Agricultural Science and Technology) ;
  • Kim, Wan-Gyu (National Institute of Agricultural Science and Technology) ;
  • Jang, Kab-Yeul (National Institute of Agricultural Science and Technology) ;
  • Noh, Hyung-Jun (National Institute of Agricultural Science and Technology)
  • 권장식 (농촌진흥청 농업과학기술원) ;
  • 원항연 (농촌진흥청 농업과학기술원) ;
  • 서장선 (농촌진흥청 농업과학기술원) ;
  • 김완규 (농촌진흥청 농업과학기술원) ;
  • 장갑열 (농촌진흥청 농업과학기술원) ;
  • 노형준 (농촌진흥청 농업과학기술원)
  • Received : 2007.09.21
  • Accepted : 2007.10.20
  • Published : 2007.12.30

Abstract

With a broad objective for the development of microbial based fertilizers, a total of 373 strains were isolated from rhizoplane and rhizosphere of pepper, tomato, lettuce, pasture, and grass. The efficacy of the isolates to augument overall plant growth was evaluated. After screening for their plant growth promotion and antagonistic properties in vitro efficient strains were further selected. The most efficient strains was characterized by 16S rRNA gene sequences and biochemical techniques and was designated as Bacillus subtilis S37-2. The strains facilitated plant growth and inhibited the plant phathogenic fungi such as Fusarium oxysporum (KACC 40037, Rhizoctonia solani (KACC 40140), and Sclerotinia sclerotiorum (KACC 40457). Pot based bioassay using lettuce as test plant was conducted by inoculating suspension ($10^5$ to $10^8cells\;mL^{-1}$) of B. subtilis S37-2 to the rhizosphere of lettuce cultivated in soil pots. Compared with non-inoculated pots, marked increase in leaf (42.3%) and root mass (48.7%) was observed in the inoculation group where the 50ml of cell mixture ($8.7{\times}10^8cells\;ml^{-1}$) was applied to the rhizosphere of letuce either once or twice. Antagonistic effects of B. subtilis S37-2 strain on S. sclerotiorum (KACC 40457) were tested. All the tested lettuce plants perished after 9 days in treatment containing only S. sclerotiorum, but only 17% of lettuce was perished in the inoculation plot. B. subtilis grew well in the TSB culture medium. The isolates grew better in yeast extracts than peptone and tryptone as nitrogen source. The growth rate was 2~4 times greater at $37^{\circ}C$ as compared with $30^{\circ}C$ incubation temperature. B. subitlis S37-2 produced $0.1{\mu}g\;ml^{-1}$ of IAA (indole 3-acetic acid) in the TSB medium containing L-tryptophan($20mg\;L^{-1}$) in 24 hours.

작물생육에 유용한 미생물을 선발하여 생물비료로 이용하고자 고추, 토마토, 상추, 오이, 목초, 잔디, 콩의 근권토양 및 뿌리표면에서 세균을 373균주 분리하였다. 각각의 균주를 작물에 접종후 작물생육에 미치는 영향을 관찰하였다. 그 중 작물생육을 촉진시키는 균주를 대상으로 작물생육량과 식물병원성 진균 억제능을 평가한 후 우수한 1균주를 선발하였다. 그리고 선발한 균주의 배양적 특성 및 식물호르몬 생산성을 분석하였다. 선발된 균주는 16S rRNA 염기서열분석, 생화학적특성 등의 분석으로 속 종명을 동정하였다. 식물생육촉진 및 식물병원성 진균을 효과적으로 억제하는 Bacillus subtilis S37-2 균주를 선발하였다. 시험에 사용된 식물병원성 진균은 Fusarium oxysporum (KACC 40037), Rhizoctonia solani (KACC 40140), Sclerotinia sclerotiorum (KACC 40457)의 3 균주였으며, 이들 균주에 대하여 모두 효과적이었다. 토양이 충진된 폿트에 상추를 재배하여 B. subtilis S37-2 균주의 희석현탁액을 $10^5{\sim}10^8cell\;ml^{-1}$ 범위의 접종 농도별로 근권에 처리후 상추의 생육량을 조사하였다. 접종균수가 많을수록 상추 생육량은 증가하였다. $8.7{\times}10^8cell\;ml^{-1}$를 주당 50 ml씩 1~2회 접종시 대조구에 비해 상추의 엽 생체중이 48.7%, 뿌리의 건물중이 42.3% 씩 각각 생육량이 증가하는 효과를 나타내었다. 상추 유묘에 식물병원성 진균인 S. sclerotiorum (KACC 40457)처리후 B. subtilis S37-2 균주를 접종한 구와 접종하지 않은 대조구를 비교한 결과 접종후 9일에 접종구는 16.7%, 대조구는 100% 이병되어 고사되었다. 배지 종류별로 B. subtilis S37-2 균주의 균체증식량을 비교한 결과 TSB배지가 양호하였으며, 질소원을 첨가할 경우 peptone, tryptone보다 yeast extract를 첨가한 구가 균체생성량이 양호하였다. 그리고 배양 온도별로는 $30^{\circ}C$에 비해 $37^{\circ}C$가 약 2~4배이상 균체생성량이 많았다. L-tryptophan을 $20mg\;L^{-1}$ 첨가한 TSB 배지에 B. subtilis S37-2 균주를 접종하여 24시간 배양후 IAA(indole 3-acetic acid) 생성량은 $0.1{\mu}g\;ml^{-1}$ 이 검출되었다.

Keywords

References

  1. Abbass, Z. and Y. Okon. 1993. Plant growth promotion by azotobacter paspali in the rhizosphere. Soil Biology & Biochemistry, 1993, 25(8):1075-1083) https://doi.org/10.1016/0038-0717(93)90156-6
  2. Claus, D. & R. C. W. Berkeley. 1986.Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105 1140. Edited by P. H. A Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams& Wilkins
  3. Dey, R., K. K. Pal, D. M. Bhatt and S.M. Chauhan. 2004. Growth promotion and yield enhancement of peanut(Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research. 159: 371-394 https://doi.org/10.1016/j.micres.2004.08.004
  4. Fallik, E., and Y. Okon. 1996. Inoculants of Azospirillum brasilense: Biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biology and Biochemistry, 28(1):123-126 https://doi.org/10.1016/0038-0717(95)00084-4
  5. Farag, M.A.., C.M. Ryu, L.W. Sumner, P.W. Pare. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotionand induced systemicresistance in plants. Phytochemistry, 67:2262-2268 https://doi.org/10.1016/j.phytochem.2006.07.021
  6. Frankenberger, W. T., Jr. and M. Arshad. 1995. Phytohormones in soils. Microbial production and function, USA
  7. Kloepper, J. W., J. Leong, M. Teintze, and M. N. Schroth. 1980. Enhancement of plant growth by siderophore produced by plant growth-promoting rhizobacteria. Nature. 286 : 885-886 https://doi.org/10.1038/286885a0
  8. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software forMolecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics. 5:150-163 https://doi.org/10.1093/bib/5.2.150
  9. Park, K. S., I. P. Ahn, and C. H. Kim. 2001. Systemic resistance and expression of the pathgenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology. 29: 48-53 https://doi.org/10.1080/12298093.2001.12015759
  10. Probanza, A., J. A. Lucas Garcia, M. Ruiz Palomino, B. Ramos, and F. J. Gutierrez Manero. 2002. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology. 20(2):75-84 https://doi.org/10.1016/S0929-1393(02)00007-0
  11. Reva, O. N., I. B. Sorokulova, and V. V. Smirnov. 2001. Simplified technique for identification of the aerobic spore-forming bacteria by phenotype. Int J SystEvol Microbiol. 51:1361 1371 https://doi.org/10.1099/00207713-51-4-1361
  12. Smibert, R. M. & N. R. Krieg. 1994. Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607 654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology
  13. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673 4680 https://doi.org/10.1093/nar/22.22.4673
  14. 日本生物工學會偏, 1993. 生物工學實驗書. 6, 細胞工學實驗. p379-386
  15. 權章軾, 徐壯善, 元恒淵. 1998. 鹽類의 스트레스가 主要 土壤微生物의 變動 및 根圈定着性에 미치는 影響. 한국토양비료학회지. 31(3):291-300