• Title/Summary/Keyword: Gene effects

Search Result 3,413, Processing Time 0.029 seconds

The Effect of Gamisungmagalguntang(加味升麻葛根湯) on Chronic Urticaria Identified as "Wind Heat" Pattern (풍열형(風熱型) 만성 두드러기에 대한 가미승마갈근탕(加味升麻葛根湯)의 치료효과)

  • Hong, Eu-Gene;Kim, Bong-Hyun;Shin, Jun-Hyuk;Nam, Hae-Jeong;Kim, Kyu-Seok
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.4
    • /
    • pp.60-69
    • /
    • 2013
  • Objective : This case series study was designed to assess the effect of Gamisungmagalguntang for chronic urticaria identified as "Wind-Heat" pattern by retrospective methods. Methods : We treated 19 patients for chronic urticaria with Gamisungmagalguntang(加味升麻葛根湯), who visited to care chronic urticaria at the department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine at Kyunghee University Korean Medical Center from 1st January 2013 to 31st August 2013. We analyzed information and body conditions of 19 patients. And by using Urticaria Activicy Score(UAS), frequency and number of wheals, itch severity and total score on a 4-point(0-3) scale were assessed in 19 patients. The change of each criterion and total scores between baseline and follow up were analyzed using paired t-test and Wilcoxon test(p<0.05). Results : 1. UAS improvement was statistically significant(p<0.001). Effects of symptom improvement were excellent(31.58%) that means symptom remission and good(42.10%) that means symptom improved over 50%. 2. Heat sensitivity as suspected provocation factor could be a marker for the Wind-Heat pattern urticaria. 3. Among the Wind-Heat pattern urticaria patients, normal digestion(52.63%) and no thirst(78.95%) were higher than abnormal conditions. Whereas about sweat item, abnormal conditions(57.89%) were higher than normal. That means abnormal sweat conditions could be a marker for a defense qi(衛氣) dysfunction of the Wind-Heat pattern urticaria. Conclusions : Our findings suggest that Gamisungmagalguntang could be effective on the Wind-Heat pattern urticaria.

Triglyceride Control Effect of Agrimonia eupatoria L. in Oleic Acid Induced NAFLD-HepG2 Model (올레산 유도 비알콜성 지방간세포에서 용아초의 중성지방 조절효과)

  • Sohn, Eun-Hwa;Kim, Taeseong;Jeong, Yong Joon;Han, Hyo-Sang;Lea, Youngsung;Cho, Young Mi;Kang, Se Chan
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.635-640
    • /
    • 2015
  • Nonalcoholic fatty liver disease (NAFLD) is a kind of liver inflammation caused by an accumulation of fat in the liver. Patients with NAFLD have an increased risk to develop liver fibrosis, which leads to cirrhosis. To investigate hepatoprotective effects of Agrimonia eupatoria L (A. eupatoria), oleic acid-induced NAFLD in HepG2 cells was used and A. eupatoria was fractionated with ethanol (EtOH), n-hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH), and H2O. Cells treated with the EtOAc fraction showed the highest lipid accumulation inhibiting effect. A. eupatoria also suppressed triglyceride accumulation and inhibited expression of lipid marker gene, such as a peroxisome proliferator activated receptor γ (PPAR-γ). Moreover, another marker, mRNA expression level of peroxisome proliferator activated receptor α (PPAR-α) was significantly increased by in a dose-dependent manner. These results suggest that A. eupatoria is a potent agent for the treatment of NAFLD.

A unique thioredoxin reductase plays defensive roles against oxidative, nitrosative and nutritional stresses in Schizosaccharomyces pombe (Schizosaccharomyces pombe의 유일한 치오레독신 환원효소의 산화적, 일산화질소 및 영양 스트레스에 대한 방어적 역할)

  • Ji, Dam-Jung;Lim, Chang-Jin;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • A unique Schizosaccharomyces pombe $TrxR^+$ gene encoding thioredoxin reductase (TrxR) was found to be positively regulated by stress-inducing agents through the stress-responsive transcription factor Pap1. In the present study, the protective roles of S. pombe TrxR were evaluated using the TrxR-overexpressing recombinant plasmid pHSM10. In the presence of hydrogen peroxide ($H_2O_2$) and superoxide anion-generating menadione (MD), S. pombe TrxR increased cellular growth and the total glutathione (GSH) level, while it reduced levels of intracellular reactive oxygen species (ROS). The nitric oxide (NO) levels of the TrxR-overexpressing cells, in the presence of $H_2O_2$ and MD, were maintained to be similar to those of the corresponding non-treated cells. Although S. pombe TrxR was able to scavenge NO generated by sodium nitroprusside (SNP), it had no significant modulating effects on cellular growth, ROS levels, or the total GSH level of SNP-exposed yeast cells, compared with the differences in those of the two non-treated cell cultures. TrxR increased the cellular growth and total GSH level, which were diminished by nitrogen starvation. It also scavenged ROS and NO produced during nitrogen starvation. Taken together, the S. pombe TrxR protects against oxidative, nitrosative, and nutritional stresses.

Soluble Expression of a Human MnSOD and Hirudin Fusion Protein in Escherichia coli, and Its Effects on Metastasis and Invasion of 95-D Cells

  • Yi, Shanze;Niu, Dewei;Bai, Fang;Li, Shuaiguang;Huang, Luyuan;He, Wenyan;Prasad, Anand;Czachor, Alexander;Tan, Lee Charles;Kolliputi, Narasaiah;Wang, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1881-1890
    • /
    • 2016
  • Manganese superoxide dismutase (MnSOD) is a vital enzyme that protects cells from free radicals through eliminating superoxide radicals ($O^{2-}$). Hirudin, a kind of small active peptide molecule, is one of the strongest anticoagulants that can effectively cure thrombus diseases. In this study, we fused Hirudin to the C terminus of human MnSOD with the GGGGS linker to generate a novel dual-feature fusion protein, denoted as hMnSOD-Hirudin. The hMnSOD-Hirudin gene fragment was cloned into the pET15b (SmaI, CIAP) vector, forming a recombinant pET15b-hMnSOD-Hirudin plasmid, and then was transferred into Escherichia coli strain Rosetta-gami for expression. SDS-PAGE was used to detect the fusion protein, which was expected to be about 30 kDa upon IPTG induction. Furthermore, the hMnSOD-Hirudin protein was heavily detected as a soluble form in the supernatant. The purification rate observed after Ni NTA affinity chromatography was above 95%. The hMnSOD-Hirudin protein yield reached 67.25 mg per liter of bacterial culture. The identity of the purified protein was confirmed by western blotting. The hMnSOD-Hirudin protein activity assay evinced that the antioxidation activity of the hMnSOD-Hirudin protein obtained was $2,444.0{\pm}96.0U/mg$, and the anticoagulant activity of the hMnSOD-Hirudin protein was $599.0{\pm}35.0ATU/mg$. In addition, in vitro bioactivity assay showed that the hMnSOD-Hirudin protein had no or little cytotoxicity in H9c2, HK-2, and H9 (human $CD_4{^+}$, T cell) cell lines. Transwell migration assay and invasion assay showed that the hMnSOD-Hirudin protein could suppress human lung cancer 95-D cell metastasis and invasion in vitro.

Siamese Crocodile White Blood Cell Extract Inhibits Cell Proliferation and Promotes Autophagy in Multiple Cancer Cell Lines

  • Phosri, Santi;Jangpromma, Nisachon;Chang, Leng Chee;Tan, Ghee T.;Wongwiwatthananukit, Supakit;Maijaroen, Surachai;Anwised, Preeyanan;Payoungkiattikun, Wisarut;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.1007-1021
    • /
    • 2018
  • Cancer represents one of the most significant threats to human health on a global scale. Hence, the development of effective cancer prevention strategies, as well as the discovery of novel therapeutic agents against cancer, is urgently required. In light of this challenge, this research aimed to evaluate the effects of several potent bioactive peptides and proteins contained in crocodile white blood cell extract (cWBC) against LU-1, LNCaP, PC-3, MCF-7, and CaCo-2 cancer cell lines. The results demonstrate that 25, 50, 100, and $200{\mu}g/ml$ cWBC exhibits a strong cytotoxic effect against all investigated cell lines ($IC_{50}$ $70.34-101.0{\mu}g/ml$), while showing no signs of cytotoxicity towards noncancerous Vero and HaCaT cells. Specifically, cWBC treatment caused a significant reduction in the cancerous cells' colony forming ability. A remarkable suppression of cancerous cell migration was observed after treatment with cWBC, indicating potent antimetastatic properties. The mechanism involved in the cancer cell cytotoxicity of cWBC may be related to apoptosis induction, as evidenced by typical apoptotic morphology features. Moreover, certain cWBC concentrations induced significant overproduction of ROS and significantly inhibited the $S-G_2/M$ transition in the cancer cell. The molecular mechanisms of cWBC in apoptosis induction were to decrease Bcl-2 and XIAP expression levels and increase the expression levels of caspase-3, caspase-8, and p53. These led to a decrease in the expression level of the cell cycle-associated gene cyclin-B1 and the arrest of cell population growth. Consequently, these findings demonstrate the prospect of the use of cWBC for cancer therapy.

Extracts of Housefly Maggot Reduces Blood Cholesterol in Hypercholesterolemic Rats (고콜레스테롤 랫드에서 파리유충 추출물의 혈액지질 감소기전)

  • Park, Byung-Sung;Park, Sang-Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.101-112
    • /
    • 2014
  • The aim of this study was to evaluate the biological mechanism of orally administered ethanolic extract of fly maggot(EM) on hypocholesterolemic rats fed a high-cholesterol diet. Sprague Dawley male rats were divided into four groups (EM dose control=0, 5.0, 7.0, and 9.0 mg/100 g BW) and were treated for 6 weeks. EM groups revealed a significant reduction in serum triglyceride, total cholesterol, and LDL-C when compared with the control group(p<0.05). HMG-CoA reductase activity in EM groups were lower than those of the control group, but total sterol, neutral sterol, and bile acid excretion were increased in EM groups when compared with the control group(p<0.05). To identify the biological mechanism of EM towards the hypocholesterolemic effect, sterol response element binding proteins (SREBPs) and the peroxisome proliferator-activated receptors ($PPAR{\alpha}$ transcription system were determined in rats fed a high-cholesterol diet. It was discovered that EM suppress the expression of SREBP-$1{\alpha}$ and SREBP-2 mRNA in the liver tissues of high-cholesterol diet fed rats, while simultaneously increasing the expression of $PPAR{\alpha}$ mRNA(p<0.05). This finding indicates that EM may have hypocholesterolemic effects in rats fed a high-cholesterol diet, by regulating cholesterol metabolism-related biochemical parameters and SREBP-$1{\alpha}$ SREPB-2 and $PPAR{\alpha}$gene expression.

Novel target genes of hepatocellular carcinoma identified by chip-based functional genomic approaches

  • Kim Dong-Min;Min Sang-Hyun;Lee Dong-Chul;Park Mee-Hee;Lim Soo-Jin;Kim Mi-Na;Han Sang-Mi;Jang Ye-Jin;Yang Suk-Jin;Jung Hai-Yong;Byun Sang-Soon;Lee Jeong-Ju;Oh Jung-Hwa
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.83-89
    • /
    • 2006
  • Cellular functions are carried out by a concerted action of biochemical pathways whose components have genetic interactions. Abnormalities in the activity of the genes that constitute or modulate these pathways frequently have oncogenic implications. Therefore, identifying the upstream regulatory genes for major biochemical pathways and defining their roles in carcinogenesis can have important consequences in establishing an effective target-oriented antitumor strategy We have analyzed the gene expression profiles of human liver cancer samples using cDNA microarray chips enriched in liver and/or stomach-expressed cDNA elements, and identified groups of genes that can tell tumors from non-tumors or normal liver, or classify tumors according to clinical parameters such as tumor grade, age, and inflammation grade. We also set up a high-throughput cell-based assay system (cell chip) that can monitor the activity of major biochemical pathways through a reporter assay. Then, we applied the cell chip platform for the analysis of the HCC-associated genes discovered from transcriptome profiling, and found a number of cancer marker genes having a potential of modulating the activity of cancer-related biochemical pathways such as E2F, TCF, p53, Stat, Smad, AP-1, c-Myc, HIF and NF-kB. Some of these marker genes were previously blown to modulate these pathways, while most of the others not. Upon a fast-track phenotype analysis, a subset of the genes showed increased colony forming abilities in soft agar and altered cell morphology or adherence characteristics in the presence of purified matrix proteins. We are currently analyzing these selected marker genes in more detail for their effects on various biological Processes and for Possible clinical roles in liver cancer development.

  • PDF

Protective Effect of Ginsenoside Rb1 on Hydrogen Peroxide-induced Oxidative Stress in Rat Articular Chondrocytes

  • Kim, Sok-Ho;Na, Ji-Young;Song, Ki-Bbeum;Choi, Dea-Seung;Kim, Jong-Hoon;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The abnormal maturation and ossification of articular chondrocytes play a central role in the pathogenesis of osteoarthritis (OA). Inhibiting the enzymatic degradation of the extracellular matrix and maintaining the cellular phenotype are two of the major goals of interest in managing OA. Ginseng is frequently taken orally, as a crude substance, as a traditional medicine in Asian countries. Ginsenoside $Rb_1$, a major component of ginseng that contains an aglycone with a dammarane skeleton, has been reported to exhibit various biological activities, including anti-inflammatory and anti-tumor effects. However, a chondroprotective effect of ginsenoside $Rb_1$ related to OA has not yet been reported. The purpose of this study was to demonstrate the chondroprotective effect of ginsenoside $Rb_1$ on the regulation of pro-inflammatory factors and chondrogenic genes. Cultured rat articular chondrocytes were treated with 100 ${\mu}M$ ginsenoside $Rb_1$ and/or 500 ${\mu}M$ hydrogen peroxide ($H_2O_2$) and assessed for viability, reactive oxygen species production, nitric oxide (NO) release, and chondrogenic gene expression. Ginsenoside $Rb_1$ treatment resulted in reductions in the levels of pro-inflammatory cytokine and NO in $H_2O_2$-treated chondrocytes. The expression levels of chondrogenic genes, such as type II collagen and SOX9, were increased in the presence of ginsenoside $Rb_1$, whereas the expression levels of inflammatory genes related to chondrocytes, such as MMP1 and MMP13, were reduced by approximately 50%. These results suggest that ginsenoside $Rb_1$ has potential for use as a therapeutic agent in OA patients.

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq

  • Lazar, Prettina;Lee, Yun-O;Kim, Song-Mi;Chandrasekaran, Meganathan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1519-1526
    • /
    • 2010
  • The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.

The Expression of Matrix Metalloprotease 20 is Stimulated by Wild Type but not by 4 bp- or 2 bp-Deletion Mutant DLX3

  • Park, Hyun-Jung;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Mutations in DLX3 are associated with both autosomal dominant hypoplastic hypomaturation amelogenesis imperfecta (ADHHAI) and tricho-dento-osseous (TDO) syndrome. ADHHAI is caused by a c.561_562delCT (2bp-del DLX3) mutation whereas TDO syndrome is associated with a c.571_574delGGGG (4bp-del DLX3) mutation. However, although the causal relationships between DLX3 and an enamel phenotype have been established, the pathophysiological role of DLX3 mutations in enamel development has not yet been clarified. In our current study, we prepared expression vectors for wild type and deletion mutant DLX3 products (4bp-del DLX3, 2bp-del DLX3) and examined the effects of their overexpression on the expression of the enamel matrix proteins and proteases. Wild type DLX3 enhanced the expression of matrix metalloprotease 20 (MMP20) mRNA and protein in murine ameloblast-like cells. However, neither a 4bp-del nor 2bp-del DLX3 increased MMP20 expression. Wild type DLX3, but not the above DLX3 mutants, also increased the activity of reporters containing 1.5 kb or 0.5 kb of the MMP20 promoter. An examination of protein stability showed that the half-life of wild type DLX3 protein was less than 12 h whilst that of both deletion mutants was longer than 24 h. Endogenous Dlx3 was also found to be continuously expressed during ameloblast differentiation. Since inactivating mutations in the gene encoding MMP20 are associated with amelogenesis imperfecta, the inability of 4bp-del or 2bp-del DLX3 to induce MMP20 expression suggests a possible involvement of such mutations in the enamel phenotype associated with TDO syndrome or ADHHAI.