• Title/Summary/Keyword: Gene duplication

Search Result 70, Processing Time 0.028 seconds

Analysis of polymorphic region of GAM-1 gene in Plasmodium vivax Korean isolates

  • Kho, Weon-Gyu;Chung, Joon-Yong;Hwang, Ui-Wook;Chun, Jin-Ho;Park, Yeong-Hong;Chung, Woo-Chul
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.4
    • /
    • pp.313-318
    • /
    • 2001
  • The identification , characterization and quantification of Plasmodium sp. genetic polymorphism are becoming increasingly important in the vaccine development. We investigated polymorphism of Plasmodium vivax GAM-1 (PvGAM-1) gene in 30 Korean isolates. The polymorphic region of the PvGAM-1 gene, corresponding to nt 3792-4029, was amplified using polymerase chain reaction (PCR) followed by sequencing. All of the P. viuax Korean isolates were one type of GAM-1 gene, which were identical to that of the Belem strain. It is suggested that PvGAM-1 could not be used as a genetic marker for identifying or classifying P. vivax Korean isolates. It revealed that the polymorphic pattern as acquired basically by duplication and modification or deletion event of a 33 bp-motif fragment ended by poly guanine (G) and that there were at least three complete and one partial 33 Up-motif sequences within the polymorphic region in the longest cases such as those of South Korean and Belem isolates. In addition, we clustered P. vivax isolates with parsimonious criteria on the basis of PvGAM- 1 polymorphic patterns (insertion/deletion patterns) .

  • PDF

Characterization of the Gene for the Light-Harvesting Peridinin-Chlorophyll-Protein of Alexandrium tamarense

  • LEE SOON-YOUL;KANG SUNG-HO;JIN EONSEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1094-1099
    • /
    • 2005
  • Photosynthetic dinoflagellates contain a water-soluble, light-harvesting antenna called the peridinin-chlorophyll-protein (PCP) complex, which has an apoprotein with no sequence similarity to other known proteins. There are two forms of PCP apoproteins; the 15-kDa short form and the 32- to 35­kDa long form. The present study describes the PCP protein and its cDNA from Alexandrium tamarense. A cDNA library was constructed from mRNA isolated from A. tamarense. The complete PCP cDNA was generated by reverse-transcription coupled to polymerase chain reaction (RT-PCR), together with rapid-amplification of cDNA ends (RACE). The A. tamarense PCP cDNA encoded a 55-amino acid signal peptide and a 313-amino acid mature protein with a calculated mass of 32 kDa, which corresponded to that of the long form of PCP. Phylogenetic analysis indicated that the sequence of A. tamarense PCP did not cluster with the short-form PCPs, to which it was only about $55\%$ identical, but which were $79-83\%$ identical to other long-form PCPs. The deduced amino acid sequence of A. tamarense PCP contains an internal duplication, which suggests the possibility that long-form PCPs arose by gene duplication or by the fusion of genes encoding the short form. The abundance of PCP mRNA changed substantially in response to different light conditions, indicating the possible existence of a photo-acclimation response in A. tamarense.

Molecular Co-evolution of Gonadotropin-releasing Hormones and Their Receptors

  • Seong, Jae-Young;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • Gonadotropin-releasing hormone (GnRH), synthesized in the hypothalamus, plays a pivotal role in the regulation of vertebrate reproduction. Since molecular isoforms of GnRH and their receptors (GnRHR) have been isolated in a broad range of vertebrate species, GnRH and GnRHR provide an excellent model for understanding the molecular co-evolution of a peptide ligand-receptor pair. Vertebrate species possess multiple forms of GnRH, which have been created through evolutionary mechanisms such as gene/chromosome duplication, gene deletion and modification. Similar to GnRHs, GnRH receptors (GnRHR) have also been diversified evolutionarily. Comparative ligand-receptor interaction studies for non-mammalian and mammalian GnRHRs combined with mutational mapping studies of GnRHRs have aided the identification of domains or motifs responsible for ligand binding and receptor activation. Here we discuss the molecular basis of GnRH-GnRHR co-evolution, particularly the structure-function relationship regarding ligand selectivity and signal transduction of mammalian and non-mammalian GnRHRs.

Combined Study of Cytogenetics and Fluorescence in Situ Hybridization (FISH) Analysis in Childhood Acute Lymphoblastic Leukemia (ALL) in a Tertiary Cancer Centre in South India

  • Mazloumi, Seyed Hashem Mir;Madhumathi, D.S.;Appaji, L.;Prasannakumari, Prasannakumari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3825-3827
    • /
    • 2012
  • FISH is one of the most sensitive molecular methods to detect genetic abnormalities with DNA probes. When cytogenetic studies are normal or insufficient, FISH may detect cryptic rearrangements, rare or slowly proliferative abnormal populations in non-mitotic cells. We cytogenetically evaluated 70 childhood ALL - 67.1% were found to have an abnormal karyotype. The 23 patients (32.9%) with a normal karyotype were analyzed by FISH applying two probes; TEL/AML1 and MYB which detect cryptic rearrangements of t(12;21)(p13;q22) and deletion of (6q) respectively, associated with a good prognosis. Out of 23 patients, one was positive for t(12;21)(p13;q22) (4.3%). None of our patients were positive for MYB del(6q). Two patients showed an extra signal for MYB on chromosomes other than 6 (8.6 %) indicating amplification or duplication. Findings were compared with the available literature. Our study clearly indicated the integrated FISH screening method to increase the abnormality detection rate in a narrow range. FISH is less useful for diagnostic study of patients with suspected del(6q) but it helps in detecting known cryptic rearrangements as well as identification of new abnormalities(translocation , duplication and amplification) at the gene level.

Cloning and characterization of ADP-ribosylation factor 1b from the olive flounder Paralichthys olivaceus

  • Son, So-Hee;Jang, Jin-Hyeon;Jo, Hyeon-Kyeong;Chung, Joon-Ki;Lee, Hyung-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.10.1-10.7
    • /
    • 2017
  • Small GTPases are well known as one of the signal transduction factors of immune systems. The ADP-ribosylation factors (ARFs) can be classified into three groups based on the peptide sequence, protein molecular weight, gene structure, and phylogenetic analysis. ARF1 recruits coat proteins to the Golgi membranes when it is bound to GTP. The class I duplicated ARF gene was cloned and characterized from the olive flounder (Paralichthys olivaceus) for this study. PoARF1b contains the GTP-binding motif and the switch 1 and 2 regions. PoARF1b and PoARF1b mutants were transfected into a Hirame natural embryo cell to determine the distribution of its GDP/GTP-bound state; consequently, it was confirmed that PoARF1b associates with the Golgi body when it is in a GTP-binding form. The results of the qPCR-described PoARF1b were expressed for all of the P. olivaceus tissues. The authors plan to study the gene expression patterns of PoARF1b in terms of immunity challenges.

Identification of Genetic Causes of Inherited Peripheral Neuropathies by Targeted Gene Panel Sequencing

  • Nam, Soo Hyun;Hong, Young Bin;Hyun, Young Se;Nam, Da Eun;Kwak, Geon;Hwang, Sun Hee;Choi, Byung-Ok;Chung, Ki Wha
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.382-388
    • /
    • 2016
  • Inherited peripheral neuropathies (IPN), which are a group of clinically and genetically heterogeneous peripheral nerve disorders including Charcot-Marie-Tooth disease (CMT), exhibit progressive degeneration of muscles in the extremities and loss of sensory function. Over 70 genes have been reported as genetic causatives and the number is still growing. We prepared a targeted gene panel for IPN diagnosis based on next generation sequencing (NGS). The gene panel was designed to detect mutations in 73 genes reported to be genetic causes of IPN or related peripheral neuropathies, and to detect duplication of the chromosome 17p12 region, the major genetic cause of CMT1A. We applied the gene panel to 115 samples from 63 non-CMT1A families, and isolated 15 pathogenic or likelypathogenic mutations in eight genes from 25 patients (17 families). Of them, eight mutations were unreported variants. Of particular interest, this study revealed several very rare mutations in the SPTLC2, DCTN1, and MARS genes. In addition, the effectiveness of the detection of CMT1A was confirmed by comparing five 17p12-nonduplicated controls and 15 CMT1A cases. In conclusion, we developed a gene panel for one step genetic diagnosis of IPN. It seems that its time- and cost-effectiveness are superior to previous tiered-genetic diagnosis algorithms, and it could be applied as a genetic diagnostic system for inherited peripheral neuropathies.

Functional Effects of Increased Copy Number of the Gene Encoding Proclavaminate Amidino Hydrolase on Clavulanic Acid Production in Streptomyces clavuligerus ATCC 27064

  • Song, Ju-Yeon;Kim, Eun-Sook;Kim, Dae-Wi;Jesen, Susan E.;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.417-426
    • /
    • 2008
  • The effect of increasing levels of proclavaminate amidino hydrolase (Pah) on the rate of clavulanic acid production in Streptomyces clavuligerus ATCC 27064 was evaluated by increasing dosoge of a gene (pah2) encoding Pah. A strain (SMF5703) harboring a multicopy plasmid containing the pah2 gene showed significantly retarded cell growth and reduced clavulanic acid production, possibly attributable to the deleterious effects of the multicopy plasmid. In contrast, a strain (SMF5704) carrying a single additional copy of pah2 introduced into chromosome via an integrative plasmid showed enhanced production of clavulanic acid and increased levels of pah2 transcripts. Analysis of transcripts of other genes involved in the clavulanic acid biosynthetic pathway revealed a pattern similar to that seen in the parent. From these results, it appears that clavulanic acid production can be enhanced by duplication of pah2 through integration of a second copy of the gene into chromosome. However, increasing the copy number of only one gene, such as pah2, does not affect the expression of other pathway genes, and so only modest improvements in clavulanic acid production can be expected. Flux controlled by Pah did increase when the copy number of pah2 was doubled, suggesting that under these growth conditions, Pah levels may be a limiting factor regulating the rate of clavulanic acid biosynthesis in S. clavuligerus.

In silico genome wide identification and expression analysis of the WUSCHEL-related homeobox gene family in Medicago sativa

  • Yang, Tianhui;Gao, Ting;Wang, Chuang;Wang, Xiaochun;Chen, Caijin;Tian, Mei;Yang, Weidi
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.19.1-19.15
    • /
    • 2022
  • Alfalfa (Medicago sativa) is an important food and feed crop which rich in mineral sources. The WUSCHEL-related homeobox (WOX) gene family plays important roles in plant development and identification of putative gene families, their structure, and potential functions is a primary step for not only understanding the genetic mechanisms behind various biological process but also for genetic improvement. A variety of computational tools, including MAFFT, HMMER, hidden Markov models, Pfam, SMART, MEGA, ProtTest, BLASTn, and BRAD, among others, were used. We identified 34 MsWOX genes based on a systematic analysis of the alfalfa plant genome spread in eight chromosomes. This is an expansion of the gene family which we attribute to observed chromosomal duplications. Sequence alignment analysis revealed 61 conserved proteins containing a homeodomain. Phylogenetic study sung reveal five evolutionary clades with 15 motif distributions. Gene structure analysis reveals various exon, intron, and untranslated structures which are consistent in genes from similar clades. Functional analysis prediction of promoter regions reveals various transcription binding sites containing key growth, development, and stress-responsive transcription factor families such as MYB, ERF, AP2, and NAC which are spread across the genes. Most of the genes are predicted to be in the nucleus. Also, there are duplication events in some genes which explain the expansion of the family. The present research provides a clue on the potential roles of MsWOX family genes that will be useful for further understanding their functional roles in alfalfa plants.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.

Molecular characterization of a repetitive element of Xanthomonas oryzae pv. oryzae

  • Yun, Choong-Hyo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.1-19
    • /
    • 1995
  • The plasmid pJEL 101 contains a highly repetitive element from the genome of Xanthomonas oryae pv. oryzae that has properties of an insertional element. The insertional nature of the element, hereto referred to as IS203, was confirmed by molecular analyses of the element and three related elements that were isolated from X. oryzae. The related sequences were isolated on the basis of transposition to the transposon-trapping vector pL3SAC and hybridization with pJEL101. The trapped elements (IS203a, IS203b, and IS203c) were each composed of 1,055 base pairs with 25 base terminal inverted repeats. The elements caused a three base pair target site duplication at the site of insertion in the sacRB gene. The sequence of pJEL 101 has 96% base pair identity with IS203a and 99% identity with IS203a and IS203c but lacks three nucleotides of the consensus left terminal repeat. IS203b has the same DNA sequences as IS203c but is inserted ito the sacRB gene in the opposite orientation. The longest open reading frame of IS203a could code for a protein of 318 amino acids and molecular weight of 37, 151. A search of the Genbank database revealed that IS203 has 51% identity with 909 nucleotides of IS4551 from Escherichia coli. The predicted protein of ORF1 has 40% and 30% amino acid identity to the ORF1 of Tn4551 and the transposase of IS30, respectively.

  • PDF