• 제목/요약/키워드: Gene dosage

검색결과 65건 처리시간 0.024초

Dosage and Duration Effects of Korean Red Ginseng Intake on Frequency of Gross Deletions in the nef Gene

  • Cho, Young-Keol;Jung, You-Sun
    • Journal of Ginseng Research
    • /
    • 제34권3호
    • /
    • pp.219-226
    • /
    • 2010
  • In the present study, we investigated whether a gross deletion in the nef gene ($g{\Delta}nef$) is induced by Korean red ginseng (KRG) intake. Ten patients were treated with KRG powder for 3 years in the absence of antiretroviral drug therapy. On average, $3,555{\pm}1,042\;g$ KRG was administered per person over $36.1{\pm}2.4$ months. There was a mild decrease in CD4 T cell count ($75{\pm}110/{\mu}L$) over the $36.1{\pm}2.4$ months (p = 0.059). We obtained 355 nef amplicons using 71 peripheral blood mononuclear cell samples over a 3-year period. All ten patients exhibited g${\Delta}$nef (range, 3.2 to 45.9%). At baseline, 3 of 78 amplicons (3.8%) exhibited $g{\Delta}nef$, whereas 18.8% (52/277) revealed $g{\Delta}nef$ during KRG-intake (p<0.001). The proportion of $g{\Delta}nef$ was significantly correlated with monthly dose of KRG (r=0.89, p<0.001). The median time for first detection of $g{\Delta}nef$ was 13 months. In conclusion, our data show that $g{\Delta}nef$ is inducible by KRG intake and its proportion is dependent on the duration of KRG intake and dose of KRG.

Neonatal Diabetes Mellitus Due to KCNJ11 (KIR6.2) Mutation Successfully Treated with Sulfonylurea

  • Jang, Sehun;Yang, Misun;Ahn, So Yoon;Sung, Se In;Chang, Yun Sil;Park, Won Soon
    • Neonatal Medicine
    • /
    • 제28권2호
    • /
    • pp.94-98
    • /
    • 2021
  • Neonatal diabetes mellitus (NDM) is a rare disease that occurs at less than 6 months of age and is presumably caused by a mutation in the gene that affects pancreatic beta-cell function. Approximately 80% of NDM cases reveal a known genetic mutation, and mutations in potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) and ABCC8 affecting the pancreatic beta-cell adenosine triphosphate-sensitive potassium channel may be treated with oral sulfonylurea. Early recognition of mutations in KCNJ11 and ABCC8 is important because early administration of sulfonylurea can not only control blood glucose levels but also improve neurodevelopmental outcomes. In the present study, we report a case of NDM that initially presented as diabetic ketoacidosis at the age of 1 month, accompanied by seizures during hospitalization. After confirmation of the KCNJ11 gene mutation (c.989A>C), we started administering oral sulfonylurea (glimepiride) at the age of 2 months. After gradually increasing the dosage of glimepiride, insulin was discontinued at the age of 3 months. To date, the infant's blood glucose levels have been well controlled without significant hypoglycemic events. No further episodes of seizures have occurred, and his developmental status is favorable.

Change of X Chromosome Status during Development and Reprogramming

  • Jung, Yong-Wook;Park, In-Hyun
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권3호
    • /
    • pp.187-195
    • /
    • 2011
  • X chromosome inactivation (XCI) is a process that enables mammalian females to ensure the dosage compensation for X-linked genes. Investigating the mechanism of XCI might provide deeper understandings of chromosomal silencing, epigenetic regulation of gene expressions, and even the course of evolution. Studies on mammalian XCI conducted with mice have revealed many fundamental findings on XCI. However, difference of murine and human XCI necessitates the further investigation in human XCI. Recent success in reprogramming of differentiated cells into pluripotent stem cells showed the reversibility of XCI in vitro, X chromosome reactivation (XCR), which provides another tool to study the change in X chromosome status. This review summarizes the current knowledge of XCI during early embryonic development and describes recent achievements in studies of XCI in reprogramming process.

The roles of homeodomain proteins during the clamp cell formation in a bipolar mushroom, Pholiota nameko

  • Yi, Ruirong;Mukaiyama, Hiroyuki;Tachikawa, Takashi;Shimomura, Norihiro;Aimi, Tadanori
    • 한국버섯학회지
    • /
    • 제9권1호
    • /
    • pp.3-16
    • /
    • 2011
  • In the bipolar basidiomycete Pholiota nameko, a pair of homeodomain protein genes located at the A mating-type locus regulates mating compatibility. In the present study, we used a DNA-mediated transformation system in P. nameko to investigate the homeodomain proteins that control the clamp formation. When a single homeodomain protein gene (A3-hox1 or A3-hox2) from the A3 monokaryon strain was introduced into the A4 monokaryon strain, the transformants produced many pseudo-clamps but very few clamps. When two homeodomain protein genes (A3-hox1 and A3-hox2) were transformed either separately or together into the A4 monokaryon, the ratio of clamps to the clamp-like cells in the transformants was significantly increased to approximately 50%. We, therefore, concluded that the gene dosage of homeodomain protein genes is important for clamp formation. When the sip promoter was connected to the coding region of A3-hox1 and A3-hox2 and the fused fragments were introduced into NGW19-6 (A4), the transformants achieved more than 85% clamp formation and exhibited two nuclei per cell, similar to the dikaryon (NGW12-163 ${\times}$ NGW19-6). The results of real-time RT-PCR confirmed that sip promoter activity is greater than that of the native promoter of homeodomain protein genes in P. nameko. So, we concluded that nearly 100% clamp formation requires high expression levels of homeodomain protein genes and that altered expression of the A mating-type genes alone is sufficient to drive true clamp formation.

Nosema sp. isolated from Cabbage White Butterfly(Pieris rapae) Collected in Korea

  • Park, Ji-Young;Kim, Jong-Gill;Park, Young-Cheol;Goo, Tae-Won;Chang, Jin-Hee;Je, Yeon-Ho;Kim, Keun-Young
    • Journal of Microbiology
    • /
    • 제40권3호
    • /
    • pp.199-204
    • /
    • 2002
  • A microsporidium, from cabbage white bntteflies, Pieris rapae, collected in Korea, was purified and characterized according to its gene structure, spore morphology and pathogenicity. From the observation of the isolate by SEM and TEM, the endospores, exospores and nuclei, about 12 polar filament coils of the polar tube and posterior vacuoles were all identified. The nucleotide sequence was determined for a portion of genomic DNA which spans the V4 variable region of the small subunit rRNA gene. Comparison with the GenBank database for 15 other microsporidia species suggests that this isolate is most closely related to Nosema species. The pathogenicity against cabbage white butterflies was quantified by inoculating variable doses of spores to the second instar larvae. Peroral inoculation at a dosage of 10$\^$8/ spores/ml resulted in the death of all larvae prior to adult eclosion, but at lower spore dosages of 10$\^$4/-10$\^$5/ spores/ml, many adults successfully emerged. The median lethal dose (LD$\_$50/) was deter-mined to be 4.6$\times$10$\^$6/ spores/ml and the isolate also transmitted transovarially to the progeny eggs at a frequency of 92%.

Resveratrol Exerts Dosage-Dependent Effects on the Self-Renewal and Neural Differentiation of hUC-MSCs

  • Wang, Xinxin;Ma, Shanshan;Meng, Nan;Yao, Ning;Zhang, Kun;Li, Qinghua;Zhang, Yanting;Xing, Qu;Han, Kang;Song, Jishi;Yang, Bo;Guan, Fangxia
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.418-425
    • /
    • 2016
  • Resveratrol (RES) plays a critical role in the fate of cells and longevity of animals via activation of the sirtuins1 (SIRT1) gene. In the present study, we intend to investigate whether RES could promote the self-renewal and neural-lineage differentiation in human umbilical cord derived MSCs (hUC-MSCs) in vitro at concentrations ranging from 0.1 to $10{\mu}M$, and whether it exerts the effects by modulating the SIRT1 signaling. Herein, we demonstrated that RES at the concentrations of 0.1, 1 and $2.5{\mu}M$ could promote cell viability and proliferation, mitigate senescence and induce expression of SIRT1 and Proliferating Cell Nuclear Antigen (PCNA) while inhibit the expression of p53 and p16. However, the effects were reversed by 5 and $10{\mu}M$ of RES. Furthermore, RES could promote neural differentiation in a dose-dependent manner as evidenced by morphological changes and expression of neural markers (Nestin, ${\beta}III-tubulin$ and NSE), as well as pro-neural transcription factors Neurogenin (Ngn)1, Ngn2 and Mash1. Taken together, RES exerts a dosage-dependent effect on the self-renewal and neural differentiation of hUC-MSCs via SIRT1 signaling. The current study provides a new strategy to regulate the fate of hUC-MSCs and suggests a more favorable in vitro cell culture conditions for hUCMSCs-based therapies for some intractable neurological disorders.

인진(茵蔯)과 인진사령산가감방(茵蔯四岺散加減方)이 간세포활성(肝細胞活性), 세포주기(細胞週期) 및 DNA damage-induced apoptosis에 미치는 영향(影響) (The Effect of Injin and Injinsaryungsangagambang on Liver Cell Viability, Lever Cell Cycle Progression and DNA Damage-induced Apoptosis)

  • 강우성;이장훈;우홍정
    • 대한한의학회지
    • /
    • 제20권1호
    • /
    • pp.91-105
    • /
    • 1999
  • The effects of Yinjin and Yinjinsaryongsangagambang on a DNA damaging agent, etoposide-induced apoptosis, cell viability, cell cycle progression, and mRNA expression of apoptosis-related genes of human hepatocyte cell line HepG2 were investigated using tryphan blue exclusion assay, MTT assay, flow cytometry, immunocytometric analysis of PCNA, and quantitative RT-PCR analysis. MTT assay showed that Yinjin and Yinjinsaryongsangagambang increases cellular viability of HepG2 cells in a dosage-dependent manner. Stimulation of cell cycle progression by Yinjin or Yinjinsaryongsangagambang was detected by flow cytometric analysis of the DNA content and immunocytometric analysis of PCNA expression. A significant reduction of a DNA-damaging agent, etoposide-induced apoptosis were found in both Yinjin and Yinjinsaryongsangagambang-treated cells in dosage-dependent manner. In overall, 3-fold reduction of apoptosis was recognized in $10.0\;{\mu}g/ml$ of Yinjin or Yinjinsaryongsangagambang-treated cells compared to untreated cells. Although the difference is not significant, Yinjinsaryongsangagambang showed slightly higher effect on the inhibition of apoptosis than Yinjin. From flow cytometric analysis of apoptosis, while 39.9% of untreated cells showed etoposide-induced apoptotic cell death, only 19.6% or 17.4% of Yinjin or Yinjinsaryongsangagambang-treated cells were fond at apoptotic sub G1 phase, respectively. Interestingly, strong induction of Gadd45-mRNA was observed from Yinjin or Yinjinsaryongsangagambang-treated cells. However, no changes in expression levels of p53 and Waf1 were detected, demonstrating that induction of Gadd45 mRNA expression by Yinjin or Yinjinsaryongsangagambang occurs by p53-independent mechanism. Marked mRNA inductions of two apoptosis-inhibiting genes, Bcl-2 and Bcl- XL, were found in both Yinjin or Yinjinsaryongsangagambang-treated HepG2 cells while no changes was detected in expression levels of an apoptosis-promoting gene, Bax.

  • PDF

sprD유전자의 과발현이 Streptomyces griseus HH1의 분화에 미치는 영향 (Effect of the Overexpression of the sprD Gene Encoding Streptomyces griseus Pretense D for the Differentiation of Streptomyces griseus HH1)

  • 이재학
    • 한국식품영양학회지
    • /
    • 제15권4호
    • /
    • pp.364-369
    • /
    • 2002
  • 방선균은 토양 속에 다양하게 존재하는 미생물의 일종으로 그람 양성 진정세균으로 이차대사산물을 생산하는 시기와 포자 착생이 시작되는 세포분화의 시기가 밀접한 관련이 있다. S. griseus는 streptomycin을 비롯한 다양한 종류의 endopeptidase 및 exopeptidase들을 생산한다. 방선균에서의 protease 생산은 많은 경우에 이차대사산물이 형성되거나 형태분화가 유도되는 시기에 동시에 시작된다는 점에서 Pretense가 이차대사물질 생산 및 세포분화에 일정한 기능을 수행할 것이 라는 점을 시사하고 있다. 본 연구에서는 S. griseus IFO 13350에서 클로닝한 SGPD protease가 각 strain에서 형태학적으로나 생리적으로 어떠한 gene dosage 효과를 미치는지 조사하는 것이었다. sprD 유전자가 S.lividans를 숙주로 사용한 시스템에서 대량발현이 성공적으로 되는 것을 확인한 후, 본 유전자를 클로닝한 S. griseus IFO13350 균주와 이의 A-factor 결손주인 S. griseus HH1에 형질전환하였다. S. griseus HH1과 S. griseus IFO13350에서는 protease activity가 벡터만 도입된 대조군과 sprD 유전자가 들어간 형질전환체에서 큰 차이를 보이지 않았다. 또한 S. griseus IFO 13350 및 HH1 모두에서 생리학적·형태학적 분화의 차이를 발견하지 못하였다. Chymotrypsin계열의 pretense를 암호화하는 유전자만이 S. griseus에서 발현이 repression된다는 사실을 본 연구 결과를 통하여 알게 되었다. 이를 바탕으로 sprD유전자와 동일계열의 chymotrypsin 계열의 유전자들이 공통적으로 S. griseus에서 repression 되는 일반적인 기전이 있을 것으로 판단, chymotrypsin계열 유전자들의 promoter부분의 염기 상동성을 조사하였다 번역개시부위 바로 상부 유전자부터 상동성을 조사한 결과 적어도 상당부분의 염기배열이 잘 보존된 지역이 존재함을 알게 되었다. 향후 이들 발현기구의 조절기구를 연구함으로서 protease의 기능을 밝히는데 좋은 단서를 제공할 것으로 판단된다.

주의력결핍 과잉행동장애에서 노르에피네프린 수송체 유전자와 오로스 메칠페니데이트 부작용의 연관성 (Association of Norepinephrine Transporter Gene and Side Effects of Osmotic-Release Oral System Methylphenidate in Attention-Deficit Hyperactivity Disorder)

  • 송정은;홍현주;이병욱;육기환
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제25권2호
    • /
    • pp.82-88
    • /
    • 2014
  • Objectives : The aim of our study was to investigate association of norepinephrine transporter gene (SLC6A2) polymorphism and side effects of osmotic-release oral system methylphenidate (OROS MPH) in children with attention-deficit hyperactivity disorder (ADHD). Methods : We recruited drug naive children with ADHD (N=97). We administered OROS MPH by tolerable dosage. At week 8 of treatment, parents completed the Barkley's side effect rating scale. We analyzed two SLC6A2 single nucleotide polymorphisms (SNPs), rs192303 and rs3785143, with blood of subjects. We compared the frequency and severity of each side effect among SLC6A2 genotypes of 2 SNPs. Results : In the analysis of frequency of each side effect, irritability differed according to rs192303 and rs3785143 genotype. In comparisons of severity, talking less and disinterest differed according to rs192303 genotype. In the case of rs3785143, severities of disinterest and irritability were involved with genotype. Conclusion : Side effects of OROS MPH showed an association with SLC6A2 genotype.

Functional Analysis of PepRSH (Pepper relA/spoT homolog) cloned from Capsicum annuum showing Systemic Acquired Resistance against Phytophthora capsici

  • Kim, Tae-Ho;Kim, Yeong-Tae;Byun, Myung-Ok;Shin, Jeong-Sheop;Go, Seoung-Joo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.69.1-69
    • /
    • 2003
  • RSH (relA/spoT homolog) has been known to determine the level of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), which are the effector nucleotide of the prokaryotic stringent response and also play a role in antibiotic production and differentiation in Streptomyces species but not a little in eukaryotic organism, especially in plant. Salicylic acid (SA), a critical signal molecule of establishing systemic acquired resistance (SAR), could induce SAR in Pepper (Capcicum annuum) against Phytophthora capsici. And the extent of SAR induction was in proportion to the dosage of SA (or BTH). Suppression subtractive hybridization (SSH), a PCR-based method for cDNA subtraction, was carried out between SA-treated and non-SA-treated pepper leaves to isolate genes which may be responsible for defense signaling against pathogens. Early upregulated gene was selected from reverse northern and kinetics of SSH-genes transcripts in SA-treated pepper leaves upon SA treatment. Full-length cDNA of the gene (PepRSH; Pepper RelA / SpoT homolog) had an open reading frame (ORF) of 2166 bp encoding a protein of 722 amino acids and a significant homology with (p)ppGpp phosphohydrolase or synthetase. Genomic DNA gel blot analysis showed that pepper genome has at least single copy of PepRSH. PepRSH transcripts was very low in untreated pepper leaves but strongly induced by SA and methyljasmonic acid (MeJA), indicating that PepRSH may share common SA and MeJA-mediated signal transduction pathway Functional analysis in E. coli showed PepRSH confers phenotypes associated with (p)ppGpp synthesis through a complementation using active site mutagenesis.

  • PDF