• Title/Summary/Keyword: Gene distribution

Search Result 818, Processing Time 0.025 seconds

Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

  • Alishiri, Athar;Rakhshandehroo, Farshad;Zamanizadeh, Hamid-Reza;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.260-273
    • /
    • 2013
  • The incidence and distribution of Tobacco mosaic virus (TMV) and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP) gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100%) among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each subgroup was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

Hirschsprung's Disease: Etiology and Pathophysiology

  • Lee, Myung-Duk
    • Advances in pediatric surgery
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • Abnormal distribution of the enteric nerves such as adrenergic, cholinergic and peptidergic nerves may cause the functional obstruction in Hirschsprung's disease (HD). Although the sustained contraction of the aganglionic segment is the main pathophysiology of HD, the etiology and pathogenesis is not thoroughly understood, With the recent progress of molecular biology and genetics,a more detailed approach to the pathogenesis of the HD can be undertaken. In this review, the roles of the nitric oxide, nitric oxide synthase and interstitial cells of Cajal on smooth muscle relaxation, the effects of extracellular matrix, cell adhesion molecules, neurotrophic factors on the migration and maturation of the neural crest cells are described. In the section of genetic factors, familial occurrences, association of chromosomal abnormalities, RET gene, glial cell line-derived neurotrophic factor gene, endothelin-3 gene and endothelin-B receptor gene and their r elationships to HD is briefly reviewed.

  • PDF

Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand

  • Sawaswong, Vorthon;Simpalipan, Phumin;Siripoon, Napaporn;Harnyuttanakorn, Pongchai;Pattaradilokrat, Sittiporn
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.2
    • /
    • pp.177-187
    • /
    • 2015
  • Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles co-existed, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.

Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.)

  • Park, Jaehyuk;Cho, Dong Youn;Moon, Jin Seong;Yoon, Moo-Kyoung;Kim, Sunggil
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • Inactivation of the gene coding for dihydroflavonol 4-reductase (DFR) is responsible for the color difference between red and yellow onions (Allium cepa L.). Two inactive DFR-A alleles, DFR-$A^{PS}$ and DFR-$A^{DEL}$, were identified in our previous study. A functional marker was developed on the basis of the premature stop codon that inactivated the DFR-$A^{PS}$ allele. A derived cleaved amplified polymorphic sequences (dCAPS) primer was designed to detect the single nucleotide polymorphism, an A/T transition, which produced the premature stop codon. Digested PCR products clearly distinguished the homozygous and heterozygous red $F_2$ individuals. Meanwhile, to develop a molecular marker for detection of the DFR-$A^{DEL}$ allele in which entire DFR-A gene was deleted, genome walking was performed and approximately 3 kb 5' and 3' flanking sequences of the DFR-$A^R$ coding region were obtained. PCR amplification using multiple primers binding to the extended flanking regions showed that more of the extended region of the DFR-A gene was deleted in the DFR-$A^{DEL}$ allele. A dominant simple PCR marker was developed to identify the DFR-$A^{DEL}$ allele using the dissimilar 3' flanking sequences of the DFR-A gene and homologous DFR-B pseudogene. Distribution of the DFR-$A^{PS}$ and DFR-$A^{DEL}$ alleles in yellow onion cultivars bred in Korea and Japan was surveyed using molecular makers developed in this study. Results showed predominant existence of the DFR-$A^{PS}$ allele in yellow onion cultivars.

No Association between Polymorphisms of Vitamin D and Oxytocin Receptor Genes and Autistic Spectrum Disorder in a Sample of Turkish Children

  • Bozdogan, Sevcan Tug;Kutuk, Meryem Ozlem;Tufan, Evren;Altintas, Zuhal;Temel, Gulhan Orekici;Toros, Fevziye
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.415-421
    • /
    • 2018
  • Objective: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social skills and communication with repetitive behaviors. Etiology is still unclear although it is thought to develop with interaction of genes and environmental factors. Oxytocin has extensive effects on intrauterine brain development. Vitamin D, affects neural development and differentiation and contributes to the regulation of around 900 genes including oxytocin receptor gene. In the present study, the contribution of D vitamin receptor and oxytocin receptor gene polymorphisms in the development of ASD in Turkish community was investigated. To our knowledge, this is the first study examining these two associated genes together in the literature. Methods: Eighty-five patients diagnosed with ASD according to DSM-5 who were referred to outpatient clinics of Child and Adolescent Psychiatry of Başkent University and Mersin University and 52 healthy, age and gender-matched controls were included in the present study. Vitamin D receptor gene rs731236 (Taq1), rs2228570 (Fok1), rs1544410 (Bsm1), rs7975232 (Apa1) polymorphisms and oxytocin receptor gene rs1042778 and rs2268493 polymorphisms were investigated using real time polymerase chain reaction method. Results: No significant difference between groups in terms of distribution of genotype and alleles in each of polymorphisms for these genes could be found. Conclusion: Knowledge of genes and polymorphisms associated with the development of ASD may be beneficial for early diagnosis and future treatment. Further studies with larger populations are required to demonstrate molecular pathways which may play part in the development of ASD in Turkey.

Determination of Fat Accumulation Reduction by Edible Fatty Acids and Natural Waxes In Vitro

  • Issara, Utthapon;Park, Suhyun;Park, Sungkwon
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.430-445
    • /
    • 2019
  • Natural edible waxes mixed with plant oils, containing high levels of unsaturated fatty acids (FAs), are known as oleogels. Oleogels are used for replacing saturated FAs in animal-derived food with unsaturated FAs. However, the health effects of edible waxes are not yet clearly defined. The purpose of this study was to investigate the effect of FAs and natural waxes on the adipogenesis in 3T3-L1 cells. The 3T3-L1 cells were differentiated and treated with FAs and waxes. These FAs [Palmitic acid (PA), Stearic acid (SA), Oleic acid (OA), Linoleic acid (LA), and Alpha-linolenic acid (ALA)] and waxes [beeswax (BW) and carnauba wax (CW)] were prepared at varying concentrations, and cell toxicity, triglyceride accumulation, lipid droplets size, and distribution inside of cells were determined. Adipogenic gene expression including $PPAR{\gamma}$, FASN, $C/EBP{\alpha}$, SREBP-1, and CPT-1 was determined. Results showed that increasing the concentration of FAs and waxes led to a decrease in the adipocyte cells viability and metabolic performance. SA showed the highest level of triglyceride accumulation (p<0.05), whereas ALA showed the lowest (p<0.05). Both BW and CW at 3.0 ppm showed significantly higher lipid accumulation than in the control and other groups (p<0.05). ALA had significantly downregulated adipogenic gene expression levels, excluding those of CPT-1, compared to the other treatment groups (p<0.05). Moreover, BW demonstrated similar adipogenic gene expression levels as ALA compared to CW. Consequently, ALA and BW may have health benefits by reducing adipogenesis and can be used in processed meat.

Whole-Genome Characterization of Alfalfa Mosaic Virus Obtained from Metagenomic Analysis of Vinca minor and Wisteria sinensis in Iran: with Implications for the Genetic Structure of the Virus

  • Moradi, Zohreh;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.619-631
    • /
    • 2021
  • Alfalfa mosaic virus (AMV), an economically important pathogen, is present worldwide with a very wide host range. This work reports for the first time the infection of Vinca minor and Wisteria sinensis with AMV using RNA sequencing and reverse transcription polymerase chain reaction confirmation. De novo assembly and annotating of contigs revealed that RNA1, RNA2, and RNA3 genomic fragments consist of 3,690, 2,636, and 2,057 nucleotides (nt) for IR-VM and 3,690, 2,594, and 2,057 nt for IR-WS. RNA1 and RNA3 segments of IR-VM and IR-WS closely resembled those of the Chinese isolate HZ, with 99.23-99.26% and 98.04-98.09% nt identity, respectively. Their RNA2 resembled that of Canadian isolate CaM and American isolate OH-2-2017, with 97.96-98.07% nt identity. The P2 gene revealed more nucleotide diversity compared with other genes. Genes in the AMV genome were under dominant negative selection during evolution, and the P1 and coat protein (CP) proteins were subject to the strongest and weakest purifying selection, respectively. In the population genetic analysis based on the CP gene sequences, all 107 AMV isolates fell into two main clades (A, B) and isolates of clade A were further divided into three groups with significant subpopulation differentiation. The results indicated moderate genetic variation within and no clear geographic or genetic structure between the studied populations, implying moderate gene flow can play an important role in differentiation and distribution of genetic diversity among populations. Several factors have shaped the genetic structure and diversity of AMV: selection, recombination/reassortment, gene flow, and random processes such as founder effects.

Prevalence of chloramphenicol-resistant gene in Escherichia coli from water sources in aquaculture farms and rivers of Kuching, Northwestern Borneo

  • Leong, Sui Sien;Lihan, Samuel;Toh, Seng Chiew
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.202-213
    • /
    • 2022
  • Antibiotic resistant Escherichia coli cases are increasing high especially in Southeast Asia. Illegal use of the antibiotic in the aquaculture farming may become the culprit of the outbreak and spread into environmental source. A study was conducted to: 1) detect the chloramphenicol (CAL)-resistant gene in E. coli isolated from three aquaculture farms and six rivers of northwestern Borneo and 2) investigate the correlation between cat gene with five common antibiotics used. Isolation of E. coli was done on Eosin methylene blue agar and characterized using indole, methyl red, Voges-Proskauer, citrate tests. E. coli isolates were subsequently tested for their susceptibility to five antibiotics commonly used in aqua-farming. The CAL-resistant E. coli were further analyzed for the presence of resistant genes (cat I, cat II, cat III, cat IV) using multiplex polymerase chain reaction. 42 bacterial colonies were isolated from a total of 80 individual water samples, 34 of which were identified as E. coli. Result showed 85.3% of the E. coli isolates were resistant to amoxicillin, 35.3% were resistant to tetracycline, 29.4% were resistant to CAL, 17.6% were resistant to nitrofurantoin and 8.8% were resistant to nalidixic acid. All of the 10 CAL resistant E. coli isolateswere detected with cat II genes; five isolates detected with cat IV genes; three isolates detected with cat III genes; and another two detected with cat I genes. Pearson correlation coefficient shows highly significant relationship between resistance pattern of CAL with amoxicillin; and CAL with tetracycline. Our findings provide the supplementary information of the CAL resistance gene distribution, thereby improving our understanding of the potential risk of antibiotic resistance underlying within this microbial ecosystem.

Fabry disease: current treatment and future perspective

  • Han-Wook Yoo
    • Journal of Genetic Medicine
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2023
  • Fabry disease (FD), a rare X-linked lysosomal storage disorder, is caused by mutations in the α-galactosidase A gene gene encoding α-galactosidase A (α-Gal A). The functional deficiency of α-Gal A results in progressive accumulation of neutral glycosphingolipids, causing multi-organ damages including cardiac, renal, cerebrovascular systems. The current treatment is comprised of enzyme replacement therapy (ERT), oral pharmacological chaperone therapy and adjunctive supportive therapy. ERT has been introduced 20 years ago, changing the outcome of FD patients with proven effectiveness. However, FD patients have many unmet needs. ERT needs a life-long intravenous therapy, inefficient bio-distribution, and generation of anti-drug antibodies. Migalastat, a pharmacological chaperone, augmenting α-Gal A enzyme activity only in patients with mutations amenable to the therapy, is now available for clinical practice. Furthermore, these therapies should be initiated before the organ damage becomes irreversible. Development of novel drugs aim at improving the clinical effectiveness and convenience of therapy. Clinical trial of next generation ERT is underway. Polyethylene glycolylated enzyme has a longer half-life and potentially reduced antigenicity, compared with standard preparations with longer dosing interval. Moss-derived enzyme has a higher affinity for mannose receptors, and seems to have more efficient access to podocytes of kidney which is relatively resistant to reach by conventional ERT. Substrate reduction therapy is currently under clinical trial. Gene therapy has now been started in several clinical trials using in vivo and ex vivo technologies. Early results are emerging. Other strategic approaches at preclinical research level are stem cell-based therapy with genome editing and systemic mRNA therapy.

The Dopamine $D_2$ Receptor Locus as a Modifying Gene in Korean Schizophrenia, Alcoholism and Drug Addiction (정신분열증, 알코올중독, 약물중독에서 도파민 $D_2$ 수용체 유전자의 조절유전자(modifying gene)로서의 역할 - 충동적.강박적.탐닉적 행동을 나타내는 정신질환들에서 도파민 $D_2$ 수용체의 조절유전자로서의 역할 -)

  • Jung, Hyun-Mo;Lee, Hong-Seock;Chang, Dong-Won;Lee, Min-Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.2
    • /
    • pp.225-233
    • /
    • 1997
  • The authors attempted to examine the allelic association between the A1 allele of Dopamine $D_2$ receptor and schizophrenia, alcoholism, drug addiction in Koreans. Schizophrenic patients(n=31), alcoholism(n=65), drug addiction(n=18) and controls(n=52) were examined by case-control study for distribution of the TaqI polymorphism of the dopamine $D_2$ receptor gene in Korean population to minimize the effect of racial differencies in gene frequencies. In schizophrenics, the numbers of schizophrenics with A1A1, A1A2, A2A2 were 9(29.0%), 15(48.4%) and 7(22.6%) respectively and in alcoholics with A1A1, A1A2, A2A2 were 14(21.5%), 36(55.4%) and 15(23.1%) respectively and in drug addiction with A1A1, A1A2, A2A2 were 2(11.1%), 10(55.6%) and 6(33.3%) respectively and in controls with A1A1, A1A2, A2A2 were 4(7.6%), 24(46.2%) and 24(46.2%) respectively. The prevalence of the A1 allele in schizophrenics, alcoholics, drug addiction and controls were 77%, 76.9%, 67% and 53.8% respectively. And the frequency of the A1 allele in schizophrenics, alcoholics, drug addiction and controls were 0.53, 0.49 0.39 and 0.31 respectively. There was significant difference in the frequency of the A1 allele between schizophrenics, alcoholics and controls. We also classified our alcoholic population. For classification by severity, we used the median MAST score 30 in our samples. There was also significant difference in the frequency of the A1 allele between less severe group(0.42) and more severe group(0.57). This data suggest that the A1 allele is associated with schizophrenia and alcoholism in Koreans. Furthermore the prevalence of the A1 allele increassed in more severely affected alcoholics. The authors conclude that our data support an allelic association between the A1 allele at dopamine $D_2$ receptor and schizophrenia, alcoholism. These results suggest the A1 allele of the $DRD_2$ gene is associated with a number of behavior disorders in which it may act as a modifying gene rather than as the primary etiological agent.

  • PDF