DOI QR코드

DOI QR Code

Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

  • Alishiri, Athar (Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University) ;
  • Rakhshandehroo, Farshad (Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University) ;
  • Zamanizadeh, Hamid-Reza (Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University) ;
  • Palukaitis, Peter (Department of Horticultural Sciences, Seoul Women's University)
  • Received : 2012.09.13
  • Accepted : 2013.03.05
  • Published : 2013.09.01

Abstract

The incidence and distribution of Tobacco mosaic virus (TMV) and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP) gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100%) among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each subgroup was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

Keywords

References

  1. Adkins, S., Kamenova, I., Achor, D. and Lewandowski, D. J. 2003. Biological and molecular characterization of a novel tobamovirus with a unique host range. Plant Dis. 87:1190-1196. https://doi.org/10.1094/PDIS.2003.87.10.1190
  2. Aldaoud, R., Dawson, W. O. and Jones, G. E. 1989. Rapid, random evolution of the genetic structure of replicating tobacco mosaic virus populations. Intervirology 30:227-233. https://doi.org/10.1159/000150096
  3. Alexandre, M. A. V., Soares, R. M., Rivas, E. B., Duarte, L. M. L., Chagas, C. M., Saunal, H., Van Regenmortel, M. H. V. and Richtzehain, L. J. 2000. Characterization of a strain of Tobacco mosaic virus from Petunia. J. Phytopathol. 148:601-607.
  4. Alishiri, A., Rakhshandehroo, F. and Zamanizadeh, H. R. 2011. First report of Tobacco mild green mosaic virus infecting tomato in Iran. New Dis. Rep. 23:30. https://doi.org/10.5197/j.2044-0588.2011.023.030
  5. Aghamohammadi, V., Rakhshandehroo, F. and Shams-Bakhsh, M. 2011. First report of Tomato mosaic virus in eggplant in Iran. J. Plant Path. 93:S4.69.
  6. Ahoonmanesh, A., Bahar, M. and Ghobadi, C. 1992. Tomato mosaic virus in Iran. Iran. J. Plant Pathol. 28:1-4.
  7. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  8. Alonso, E., Garcia-Luque, I., Avila-Rincon, M. J., Wicke, B., Serra, M. T. and Diaz-Ruiz, J. R. 1989. A tobamovirus causing heavy losses in protected pepper crops in Spain. J. Phytopathol. 125:67-76. https://doi.org/10.1111/j.1439-0434.1989.tb01057.x
  9. Antignus, Y., Wang, Y., Pearlsman, M., Lachman, O., Lavi, N. and Gal-on, A. 2001. Biological and molecular characterization of a new cucurbit-infecting Tobamovirus. Phytopathology 91:565-571. https://doi.org/10.1094/PHYTO.2001.91.6.565
  10. Arli-Sokmen, M., Mennan, H., Sevik, M. A. and Ecevit, O. 2005. Occurrence of viruses in field-grown pepper crops and some of their reservoir weed hosts in Samsun, Turkey. Phytoparasitica 33:347-358. https://doi.org/10.1007/BF02981301
  11. Bananej, K., Desbiez, C., Wipf-Scheibel, A., Vahdat, A., Kheyr- Pour, A., Ahoonmanesh, A. and Lecoq, H. 2006. First report of Cucurbit aphid-borne yellows virus in Iran causing yellows on four cucurbit crops. Plant Dis. 90:526.
  12. Banane, K. and Vahdat, A. 2008. Identification, distribution and incidence of viruses in field-grown cucurbit crops of Iran. Phytopath. Medit. 47:247-257.
  13. Broadbent, L. H. 1965. The epidemiology of tomato mosaic. Seed-transmission of TMV. Ann. Appl. Biol. 56:177-205. https://doi.org/10.1111/j.1744-7348.1965.tb01227.x
  14. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J. and Watson, L. 1995. Viruses of plants: Description and lists from the VIDE database. CAB International, Wallingford, UK.
  15. Channuntapipat, C., Sedgley, M. and Collins, G. 2001. Sequences of the cDNAs and genomic DNAs encoding the S1, S7, S8, and Sf alleles from almond, Prunus dulcis. Theor. Appl. Genet. 103:1115-1122. https://doi.org/10.1007/s001220100629
  16. Cherian, S. and Muniyapppa, V. 1998. ELISA based survey and host range of tomato mosaic tobamovirus. Ind. J. Virol. 14:65-69.
  17. Chitra, T. R., Prakash, H. S., Albrechtsen, S. E., Shetty, H. S. and Mathur, S. B. 2002. Indexing of leaf and seed samples of tomato and bell pepper for tobamoviruses. Ind. Phytopathol. 55:84-86.
  18. Choi, S. K., Yoon, J. Y. and Chung, B. N. 2009. Genome analysis and characterization of a tobacco mosaic virus isolate infecting balsam (Impatiens balsamina). Arch. Virol. 154:881-885. https://doi.org/10.1007/s00705-009-0377-x
  19. Chung, B. N., Kim, J. S., Cho, J. D., Cheong, S. R. and Jeong, M. I. 2007. Tobacco mosaic virus detected in vegetatively propagated petunia hybrid 'Surfinia'. Plant Pathol. J. 23:34-36. https://doi.org/10.5423/PPJ.2007.23.1.034
  20. Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475-483. https://doi.org/10.1099/0022-1317-34-3-475
  21. Culver, J. N. 2002. Tobacco mosaic virus assembly and disassembly: Determinants in pathogenicity and resistance. Annu. Rev. Phytopathol. 40:287-308. https://doi.org/10.1146/annurev.phyto.40.120301.102400
  22. Dizadji, A. and Shahraeen, N. 2009. Occurrence, distribution and seasonal changes of viruses infecting common bean in northwestern Iran. Arch. Phytopath. Plant Protec. 44:1647-1654.
  23. F.A.O. 2009. F.A.O. Statistical Databases. Preliminary 2009 production data. http://faostat.fao.org/site/339/default.aspx.
  24. Fraile, A., Malpica, J. M., Aranda, M. A., Rodriguez-Cerezo, E. and Garcia-Arenal, F. 1996. Genetic diversity in tobacco mild green mosaic tobamovirus infecting the wild plant Nicotiana glauca. Virology 223:148-155. https://doi.org/10.1006/viro.1996.0463
  25. Fu, Y. X. and Li, W. H. 1993. Statistical tests of neutrality of mutations. Genetics 133:693-709.
  26. Garcia-Arenal, F., Fraile, A. and Malpica, J. M. 2001. Variability and genetic structure of plant virus populations. Ann. Rev. Phytopathol. 39:157-186. https://doi.org/10.1146/annurev.phyto.39.1.157
  27. Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J. and Karn, J. 1982. Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl. Acad. Sci. USA 9:5818-5822.
  28. Golnaraghi, A. R., Shahraeen, N., Pourrahim, R., Farzadfar, Sh. and Ghasemi, A. 2004. Occurrence and relative incidence of viruses infecting soybeans in Iran. Plant Dis. 88:1069-1074. https://doi.org/10.1094/PDIS.2004.88.10.1069
  29. Hollings, M. and Huttinga, H. 1976. Tomato mosaic virus. CMI/ AAB Descriptions of plant viruses, no. 156. Commonwealth Mycology Institute/Association for Applied Biology, Kew.
  30. Hu, J. S., Ferreira, S., Xu, M. Q., Lu, M., Iha, M., Pflum, M. and Wang, M. 1994. Transmission, movement and inactivation of Cymbidium mosaic and Odontoglossum ringspot viruses. Plant Dis. 78:633-636. https://doi.org/10.1094/PD-78-0633
  31. Jones, G. E. and Dawson, W. O. 1978. Stability of mutations conferring temperature sensitivity on tobacco mosaic virus. Intervirology 9:149-155. https://doi.org/10.1159/000148931
  32. Jung, H. W., Yun, W. S., Hahm, Y. I. and Kim, K. H. 2002. Characterization of Tobacco mosaic virus isolated from potato showing yellow leaf mosaic and stunting symptoms in Korea. Plant Dis. 86:112-117. https://doi.org/10.1094/PDIS.2002.86.2.112
  33. Khateri, H., Moarrefzadeh, N., Mosahebi, G. and Koohi-Habibi, M. 2008. Virus diseases in the tobacco fields of Gilan and West Azarbaijan provinces of Iran. Comm. Appl. Biol. Sci. 73:307-310.
  34. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  35. Kumar, S., Udaya Shankar, A. C., Nayaka, S. C., Lund, O. S. and Prakash, H. S. 2011. Detection of Tobacco mosaic virus and Tomato mosaic virus in pepper and tomato by multiplex RTPCR. Lett. Appl. Microbiol. 53:359-363. https://doi.org/10.1111/j.1472-765X.2011.03117.x
  36. Lartey, R. T., Voss, T. C. and Melcher, U. K. 1996. Tobamovirus evolution: gene overlaps, recombination, and taxonomic implications. Mol. Biol. Evol. 13:1327-1338. https://doi.org/10.1093/oxfordjournals.molbev.a025579
  37. Letschert, B., Adam, G., Lesemann, D. E., Willingmann, P. and Heinze, P. 2002. Detection and differentiation of serologically cross-reacting tobamoviruses of economical importance by RT-PCR and RT-PCR-RFLP. J. Virol. Method. 106:1-10. https://doi.org/10.1016/S0166-0934(02)00135-0
  38. Lewandowski, D. J., Hayes, A. J. and Adkins, S. 2010. Surprising results from a search for effective disinfectants for Tobacco mosaic virus contaminated tools. Plant Dis. 94:542-550. https://doi.org/10.1094/PDIS-94-5-0542
  39. Librado, P. and Rozas, J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  40. Massumi, H., Samei, A., Hosseini Pour, A., Shaabanian, M. and Rahimian, H. 2007. Occurrence, distribution, and relative incidence of seven viruses infecting greenhouse-grown cucurbits in Iran. Plant Dis. 91:159-163. https://doi.org/10.1094/PDIS-91-2-0159
  41. Massumi, H., Shaabanian, M., Hosseini Pour, A., Heydarnejad, J. and Rahimian, H. 2009. Incidence of viruses infecting tomato and their natural hosts in the southeast and central regions of Iran. Plant Dis. 93:67-72. https://doi.org/10.1094/PDIS-93-1-0067
  42. Moreira, S. R., Eiras, M., Chaves, A. L. R., Galleti, S. R. and Colariccio, A. 2003. Caracterizacao de uma nova estirpe do Tomato mosaic virus isolada de tomateiro no Estado de Sao Paulo. Fitopatol. Brasil. 28:602-607. https://doi.org/10.1590/S0100-41582003000600004
  43. Nassar, E. A., El-Dougdoug, K. A., Osman, M. E., Dawoud, R. A. and Kinawy, A. H. 2012. Characterization and elimination of a TMV isolate infecting Chrysanthemum plants in Egypt. Int. J. Virol. 8:14-26. https://doi.org/10.3923/ijv.2012.14.26
  44. Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
  45. Novikov, V. K., Belenovich, E. V., Dobrov, E. N. and Zavriev, S. K. 2000. Kazakh strains of tobacco mosaic virus: two strains with potentially destabilizing amino acid substitutions in the coat protein. Physiol. Mol. Plant Path. 56:71-77. https://doi.org/10.1006/pmpp.1999.0251
  46. Padgett, H. S. and Beachy, R. N. 1993. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell 5:577-586. https://doi.org/10.1105/tpc.5.5.577
  47. Pearson, W. R. and Lipman, D. J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444-2448. https://doi.org/10.1073/pnas.85.8.2444
  48. Pelham, J., Fletcher, J. T. and Hawkins, J. H. 1970. The establishment of a new strain of tobacco mosaic virus resulting from the use of resistant varieties of tomato. Ann. Appl Biol. 65: 293-297. https://doi.org/10.1111/j.1744-7348.1970.tb04590.x
  49. Pourrahim, R., Farzadfar, Sh., Golnaraghi, A. R. and Ahoonmanesh, A. 2007. Incidence and distribution of important viral pathogens in some Iranian potato fields. Plant Dis. 91:609-615. https://doi.org/10.1094/PDIS-91-5-0609
  50. Rangel, E. A., Alfaro-Fernandez, A., Font-San-Ambrosio, M. I., Luis-Arteaga, M. and Rubio, L. 2011. Genetic variability and evolutionary analyses of the coat protein gene of Tomato mosaic virus. Virus Genes 43:435-438. https://doi.org/10.1007/s11262-011-0651-3
  51. Rodrlguez-Cerezo, E., Moya, A. and Garcl!a-Arenal, F. 1989. Variability and evolution of the plant RNA virus Pepper mild mottle virus. J. Virol. 63:2198-2203.
  52. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  53. Shiel, P. J. and Castello, J. D. 1985. Detection of tobacco mosaic and tobacco ringspot viruses in herbaceous and woody plants near virus-infected white ash trees in central New York. Plant Dis. 69:791-795.
  54. Soleimani, P., Mosahebi, G. and Koohi-Habibi, M. 2011. Identification of some viruses causing mosaic on lettuce and characterization of Lettuce mosaic virus from Tehran Province in Iran. Afric. J. Agric. Res. 6:3029-3035.
  55. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.
  56. Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+Ccontent biases. Mol. Biol. Evol. 9:678-687.
  57. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  58. Van Regenmortel, M. H. V. 1986. Tobacco mosaic virus. Antigenic structure. In: The Plant Viruses, Vol. 2. M. H. V. van Regenmortel and H. Fraenkel-Conrat, ed. Plenum Press, New York.
  59. Wang, H., Culver, J. N. and Stubbs, G. 1997. Structure of Ribgrass mosaic virus at 2.9 A resolution: evolution and taxonomy of tobamoviruses. J. Mol. Biol. 269:769-779. https://doi.org/10.1006/jmbi.1997.1048
  60. Weir, B. S. and Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370. https://doi.org/10.2307/2408641
  61. Weir, B. S. and Hill, W. G. 2002. Estimating F-statistics. Ann. Rev. Genet. 36:721-750. https://doi.org/10.1146/annurev.genet.36.050802.093940
  62. Yarwood, C. E. 1979. Host passage effect with plant viruses. Adv. Virus Res. 25:169-190. https://doi.org/10.1016/S0065-3527(08)60570-9
  63. Zaitlin, M. 1999. Elucidation of the genome organization of tobacco mosaic virus. Philos. Trans. R Soc. Lond. B Biol. Sci. 354:587-591. https://doi.org/10.1098/rstb.1999.0410

Cited by

  1. (L.)] in Java, Indonesia vol.197, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/197/1/012043