• Title/Summary/Keyword: Gene and cell therapy

Search Result 460, Processing Time 0.024 seconds

TIMP-2 Gene Transfer Via Adenovirus Inhibits the Invasion of Lung Cancer Cell (TIMP-2 유전자 재조합 아데노바이러스의 폐암세포 침윤 억제 효과)

  • Oh, Yeon-Mok;Lee, Jae-Ho;Yoo, Chul-Gyu;Chung, Hee-Soon;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.2
    • /
    • pp.189-197
    • /
    • 2000
  • Background : Tissue inhibitor of metalloproteinase is a natural inhibitor that counteracts pro teolytic enzymes essential to the invasion of cancer cell. Whether or not TIMP-2 gene transfer via adenovirus could inhibit the invasion of lung cancer cell iη vitro was evaluated for the future purpose of gene therapy against lung cancer. Methods : Recombinant adenovirus-TIMP-2(Ad-TIMP-2) was generated by homologous recombination after pACCMV-TIMP-2 and pJM17 were cotransfected into 293 cell by standard calcium phosphate coprecipitate method. Calu-6, one of the most invasive lung cancer cells, was transduced with Ad-TIMP-2 or Ad-$\beta$gal. Anchorage-independent growth and invasiveness were assessed by soft agar clonogenicity assay and invasion assay using two-chamber, well divided by matrigel. Results : Ad-TIMP-2 transduced calu-6 cells produced biologically active TIMP-2 more than 50 times more than parental calu-6. TIMP-2 gene transfer did not suppress the in vitro tumorigenicity. However, two chamber well assay revealed that Ad-TIMP-2 transduction reduced the invasiveness of calu-6 efficiently (12% compared with parental cell) even at low 10moi. Conclusion : Even though TIMP-2 gene transfer did not inhibit in vitro tumorigenicity, it did inhibit invasion of lung cancer cell in vitro. The inhibition of invasion by Ad-TIMP-2 may be a useful strategy for the treatment of lung cancer.

  • PDF

Detection of Human Cytomegalovirus UL97 D605E Mutation in Korean Stem Cell Transplantation Recipients and Donors

  • Lee, Gyu-Cheol;Choi, Su-Mi;Lee, Chan Hee;Lee, Dong-Gun;Choi, Jung-Hyun;Yoo, Jin-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1154-1158
    • /
    • 2013
  • Ganciclovir resistance of human cytomegalovirus is associated with mutations in the viral UL97 gene and poses severe problems for immunocompromised patients. In this study, PCR-based restriction fragment length polymorphism and sequencing analyses detected the UL97 D605E mutation in all five clinical isolates from patients with ganciclovir-resistant human cytomegalovirus infection during prolonged ganciclovir therapy, whereas the M460V mutation was only present in 1 of 5 isolates. On the other hand, the detection rates of the D605E mutation in the stored available DNA samples from the donor and allogeneic stem cell transplantation recipients were 66.7% and 93.7%, respectively, suggesting that the presence of D605E mutation was not associated with the ganciclovir exposure. Although the D605E mutation may not be related to ganciclovir resistance, we suggest that this mutation could be an important molecular marker of human cytomegalovirus evolution in East Asian countries. Moreover, the restriction fragment length polymorphism method using the restriction enzyme HaeIII, which is generally used to detect the UL97 A591V mutation, could also detect the D605E mutation and may therefore be a useful tool for future research on the investigation of UL97 gene mutations.

Epigenetic modification of α-N-acetylgalactosaminidase enhances cisplatin resistance in ovarian cancer

  • Ha, Ye-Na;Sung, Hye Youn;Yang, San-Duk;Chae, Yun Ju;Ju, Woong;Ahn, Jung-Hyuck
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Although cisplatin is one of the most effective antitumor drugs for ovarian cancer, the emergence of chemoresistance to cisplatin in over 80% of initially responsive patients is a major barrier to successful therapy. The precise mechanisms underlying the development of cisplatin resistance are not fully understood, but alteration of DNA methylation associated with aberrant gene silencing may play a role. To identify epigenetically regulated genes directly associated with ovarian cancer cisplatin resistance, we compared the expression and methylation profiles of cisplatin-sensitive and -resistant human ovarian cancer cell lines. We identified ${\alpha}$-N-acetylgalactosaminidase (NAGA) as one of the key candidate genes for cisplatin drug response. Interestingly, in cisplatin-resistant cell lines, NAGA was significantly down-regulated and hypermethylated at a promoter CpG site at position +251 relative to the transcriptional start site. Low NAGA expression in cisplatin-resistant cell lines was restored by treatment with a DNA demethylation agent, indicating transcriptional silencing by hyper-DNA methylation. Furthermore, overexpression of NAGA in cisplatin-resistant lines induced cytotoxicity in response to cisplatin, whereas depletion of NAGA expression increased cisplatin chemoresistance, suggesting an essential role of NAGA in sensitizing ovarian cells to cisplatin. These findings indicate that NAGA acts as a cisplatin sensitizer and its gene silencing by hypermethylation confers resistance to cisplatin in ovarian cancer. Therefore, we suggest NAGA may be a promising potential therapeutic target for improvement of sensitivity to cisplatin in ovarian cancer.

Colorectal Cancer Therapy Using a Pediococcus pentosaceus SL4 Drug Delivery System Secreting Lactic Acid Bacteria-Derived Protein p8

  • An, Byung Chull;Ryu, Yongku;Yoon, Yeo-Sang;Choi, Oksik;Park, Ho Jin;Kim, Tai Yeub;Kim, Song-In;Kim, Bong-Kyu;Chung, Myung Jun
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.755-762
    • /
    • 2019
  • Despite decades of research into colorectal cancer (CRC), there is an ongoing need for treatments that are more effective and safer than those currently available. Lactic acid bacteria (LAB) show beneficial effects in the context of several diseases, including CRC, and are generally regarded as safe. Here, we isolated a Lactobacillus rhamnosus (LR)-derived therapeutic protein, p8, which suppressed CRC proliferation. We found that p8 translocated specifically to the cytosol of DLD-1 cells. Moreover, p8 down-regulated expression of Cyclin B1 and Cdk1, both of which are required for cell cycle progression. We confirmed that p8 exerted strong anti-proliferative activity in a mouse CRC xenograft model. Intraperitoneal injection of recombinant p8 (r-p8) led to a significant reduction (up to 59%) in tumor mass when compared with controls. In recent years, bacterial drug delivery systems (DDSs) have proven to be effective therapeutic agents for acute colitis. Therefore, we aimed to use such systems, particularly LAB, to generate the valuable therapeutic proteins to treat CRC. To this end, we developed a gene expression cassette capable of inducing secretion of large amounts of p8 protein from Pediococcus pentosaceus SL4 (PP). We then confirmed that this protein (PP-p8) exerted anti-proliferative activity in a mouse CRC xenograft model. Oral administration of PP-p8 DDS led to a marked reduction in tumor mass (up to 64%) compared with controls. The PP-p8 DDS using LAB described herein has advantages over other therapeutics; these advantages include improved safety (the protein is a probiotic), cost-free purification, and specific targeting of CRC cells.

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.

Reduction of Migration and Invasion Ability of nm23-H1 Transfected U87MG (nm23-H1 유전자가 주입된 U87MG 세포의 이동능과 침윤능의 감소)

  • Paek, Yun-Woong
    • Journal of Korean Biological Nursing Science
    • /
    • v.7 no.1
    • /
    • pp.47-56
    • /
    • 2005
  • nm23-H1 gene expression has been inversely correlated with tumor metastatic potential in certain tumors including melanomas, breast carcinomas, and hepatocellular carcinomas. However, its role with respect to the invasive behavior of central nervous system tumors has scarcely been addressed Because cell motility and invasion plays an essential role in metastatic dissemination, we have studied whether motile human glioma cell(U87MG) transfected with nm23-H1 complementary DNA have any alterations in their ability to migrate and invade. There was no significant changes in the shape and size of the cells following nm23-H1 transfection. The role of nm23-H1 in glioma migration and invasion have been evaluated by in vitro simple scratch technique and brain slice invasion model Basal migration ability of nm23-H1 transfectants cell(U87MG-pEGFP-nm23) were lesser than U87MG. Accordingly, U87MG-pEGFP-nm23 didn't migrate away apparently from the tumors implanted site comparing U87MG in brain slice invasion model. These results suggest that nm23-H1 may play an important role in suppressing the human glioma migration and invasion.

  • PDF

Regulatory Network of MicroRNAs, Host Genes, Target Genes and Transcription Factors in Human Esophageal Squamous Cell Carcinoma

  • Wang, Tian-Yan;Xu, Zhi-Wen;Wang, Kun-Hao;Wang, Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3677-3683
    • /
    • 2015
  • Abnormally expressed microRNAs (miRNAs) and genes have been found to play key roles in esophageal squamous cell carcinoma (ESCC), but little is known about the underlying mechanisms. The aim of this paper was to assess inter-relationships and the regulatory mechanisms of ESCC through a network-based approach. We built three regulatory networks: an abnormally expressed network, a related network and a global network. Unlike previous examples, containing information only on genes or miRNAs, the prime focus was on relationships. It is worth noting that abnormally expressed network emerged as a fault map of ESCC. Theoretically, ESCC might be treated and prevented by correcting the included errors. In addition, the predicted transcription factors (TFs) obtained by the P-match method also warrant further study. Our results may further guide gene therapy researchers in the study of ESCC.

Cinobufacin Suppresses Cell Proliferation via miR-494 in BGC-823 Gastric Cancer Cells

  • Zhou, Rong-Ping;Chen, Gang;Shen, Zhi-Li;Pan, Li-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1241-1245
    • /
    • 2014
  • Cinobufacin is used clinically to treat patients with many solid malignant tumors. However, the mechanisms underlying action remain to be detailed. Our study focused on miRNAs involved in cinobufacin inhibition of GC cell proliferation. miRNA microarray analysis and real time PCR identified miR-494 as a significant cinobufacin-associated miRNA. In vivo, ectopic expression of miR-494 inhibited the proliferation and induced apoptosis of BGC-823 cells on CCK-8 and flow cytometry analysis. Further study verified BAG-1 (anti-apoptosis gene) to bea target of miR-494 by luciferase reporter assay and Western blotting. In summary, our study demonstrated that cinobufacin may inhibit the proliferation and promote the apoptosis of BGC-823 cells. Cinobufacin-associated miR-494 may indirectly be involved in cell proliferation and apoptosis by targeting BAG-1, pointing to use as a potential molecular target of cinobufacin in gastric cancer therapy.

Establishment of a Hepatocellular Carcinoma Cell Line Expressing Dual Reporter Genes: Sodium Iodide Symporter (NIS) and Enhanced Green Fluorescence Protein (EGFP) (나트륨 옥소 공동수송체 유전자와 녹색 형광 유전자의 이중 리포터 유전자를 발현하는 간암세포주 확립)

  • Kwak, Won-Jung;Koo, Bon-Chul;Kwon, Mo-Sun;Lee, Yong-Jin;Lee, Hwa-Young;Yoo, Jeong-Soo;Kim, Te-Oan;Chun, Kwon-Soo;Cheon, Gi-Jeong;Lee, Sang-Woo;Ahn, Byeong-Cheol;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.226-233
    • /
    • 2007
  • Purpose: Dual reporter gene imaging has several advantages for more sophisticated molecular imaging studies such as gene therapy monitoring. Herein, we have constructed hepatoma cell line expressing dual reporter genes of sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP), and the functionalities of the genes were evaluated in vivo by nuclear and optical imaging. Materials and Methods: A pRetro-PN vector was constructed after separating NIS gene from pcDNA-NIS. RSV-EGFP-WPRE fragment separated from pLNRGW was cloned into pRetro-PN vector. The final vector expressing dual reporter genes was named pRetro-PNRGW. A human hepatoma (HepG2) cells were transfected by the retrovirus containing NIS and EGFP gene (HepG2-NE). Expression of NIS gene was confirmed by RT-PCR, radioiodine uptake and efflux studies. Expression of EGFP was confirmed by RT-PCR and fluorescence microscope. The HepG2 and HepG2-NE cells were implanted in shoulder and hindlimb of nude mice, then fluorescence image, gamma camera image and I-124 microPET image were undertaken. Results: The HepG2-NE cell was successfully constructed. RT-PCR showed NIS and EGFP mRNA expression. About 50% of cells showed fluorescence. The iodine uptake of NIS-expressed cells was about 9 times higher than control. In efflux study, $T_{1/2}$ of HepG2-NE cells was 9 min. HepG2-NE xenograft showed high signal-to-background fluorescent spots and higher iodine-uptake compared to those of HepG2 xenograft. Conclusion: A hepatoma cell line expressing NIS and EGFP dual reporter genes was successfully constructed and could be used as a potential either by therapeutic gene or imaging reporter gene.

Silencing of Suppressor of Cytokine Signaling-3 due to Methylation Results in Phosphorylation of STAT3 in Imatinib Resistant BCR-ABL Positive Chronic Myeloid Leukemia Cells

  • Al-Jamal, Hamid AN;Jusoh, Siti Asmaa Mat;Yong, Ang Cheng;Asan, Jamaruddin Mat;Hassan, Rosline;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4555-4561
    • /
    • 2014
  • Background: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib. Materials and Methods: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and $IC_{50}$ values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting. Results: The $IC_{50}$ for imatinib on K562 was 362nM compared to 3,952nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down-regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562. Conclusions: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.