• Title/Summary/Keyword: Gene Targeting

Search Result 474, Processing Time 0.023 seconds

Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

  • Maret, Wolfgang
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic ${\beta}$- and ${\alpha}$-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the pathobiochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of ${\beta}$-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions.

Identification and Distribution of Nontuberculous Mycobacteria from 2005 to 2011 in Cheonan, Korea

  • Kim, Jae Kyung;Rheem, Insoo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.74 no.5
    • /
    • pp.215-221
    • /
    • 2013
  • Background: Nontuberculous mycobacteria (NTM) are considered opportunistic pathogens, and several species of NTM are associated with human diseases that typically involve the pulmonary, skin/soft tissue, or lymphatic systems; such infection may also cause disseminated diseases. Recent studies have reported increasing rates of NTM-induced disease worldwide. Methods: Respiratory samples are being analyzed for acid-fast bacilli (AFB) culture and NTM identification at Dankook University Hospital in Cheonan, Korea, from September 2005 to September 2011. Identification is performed by using polymerase chain reaction-restriction fragment length polymorphism analysis targeting a novel region of the rpoB gene. Results: A total of 25,133 specimens were received for AFB culture, of which 1,014 (4.0%) were NTM-positive. A total of 267 samples from 186 patients were tested for NTM identifications, and 232 samples from 157 patients were positive for NTM species. Among the patients who tested positive for NTM, 65.6% were men and the average age was 63.3 years. Mycobacterium avium complex, the most commonly detected NTM pathogen, was found in 65.9% of the 232 samples. The annual average percentage of NTM isolates from AFB culture-positive specimens was 31.3%: the highest rate was seen in 2011 (44.3%), followed by 2009 (37.4%) and 2010 (37.2%). An upward trend in NTM incidence was found during the study period. Conclusion: The prevalence of pulmonary NTM isolates continues to increase in Cheonan, suggesting that pulmonary NTM disease is becoming increasingly common.

Emerging Paradigm of Crosstalk between Autophagy and the Ubiquitin-Proteasome System

  • Nam, Taewook;Han, Jong Hyun;Devkota, Sushil;Lee, Han-Woong
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.897-905
    • /
    • 2017
  • Cellular protein homeostasis is maintained by two major degradation pathways, namely the ubiquitin-proteasome system (UPS) and autophagy. Until recently, the UPS and autophagy were considered to be largely independent systems targeting proteins for degradation in the proteasome and lysosome, respectively. However, the identification of crucial roles of molecular players such as ubiquitin and p62 in both of these pathways as well as the observation that blocking the UPS affects autophagy flux and vice versa has generated interest in studying crosstalk between these pathways. Here, we critically review the current understanding of how the UPS and autophagy execute coordinated protein degradation at the molecular level, and shed light on our recent findings indicating an important role of an autophagy-associated transmembrane protein EI24 as a bridging molecule between the UPS and autophagy that functions by regulating the degradation of several E3 ligases with Really Interesting New Gene (RING)-domains.

Application of digital polymerase chain reaction technology for noninvasive prenatal test

  • Lee, Seung Yong;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, noninvasive prenatal test (NIPT) has been adopted as a primary screening tool for fetal chromosomal aneuploidy. The principle of NIPT lies in isolating the fetal fraction of cell-free DNA in maternal plasma and analyzing it with bioinformatic tools to measure the amount of gene from the target chromosome, such as chromosomes 21, 18, and 13. NIPT will contribute to decreasing the need for unnecessary invasive procedures, including amniocentesis and chorionic villi sampling, for confirming fetal aneuploidy because of its higher positive predictive value than that of the conventional prenatal screening method. However, its greater cost than that of the current antenatal screening protocol may be an obstacle to the adoption of this innovative technique in clinical practice. Digital polymerase chain reaction (dPCR) is a novel approach for detecting and quantifying nucleic acid. dPCR provides real-time diagnostic advantages with higher sensitivity, accuracy, and absolute quantification than conventional quantitative PCR. Since the groundbreaking discovery that fetal cell-free nucleic acid exists in maternal plasma was reported, dPCR has been used for the quantification of fetal DNA and for screening for fetal aneuploidy. It has been suggested that dPCR will decrease the cost by targeting specific sequences in the target chromosome, and dPCR-based noninvasive testing will facilitate progress toward the implementation of a noninvasive approach for screening for trisomy 21, 18, and 13. In this review, we highlight the principle of dPCR and discuss its future implications in clinical practice.

The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells

  • Kim, Hye-Eun;Ishihara, Atsushi;Lee, Seong-Gene
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.724-729
    • /
    • 2012
  • In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), TYR, and tyrosinase-related protein-1 (TRP-1), but not TRP-2. ${\alpha}$-MSH is known to interact with melanocortin 1 receptor (MC1R) thus activating adenylyl cyclase and increasing intracellular cyclic AMP (cAMP) levels. Furthermore, cAMP activates extracellular signal-regulated kinase 2 (ERK2) via phosphorylation, which phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. The CaS reduced intracellular cAMP levels to unstimulated levels and activated ERK phosphorylation within 30 min. The ERK inhibitor PD98059 abrogated the suppressive effect of CaS on ${\alpha}$-MSH-induced melanogenesis. Based on this study, the inhibitory effects of CaS on melanogenesis are derived from the downregulation of MITF signaling via the inhibition of intracellular cAMP levels, as well as acceleration of ERK activation.

Immune Checkpoint Inhibitors: Therapeutic Tools for Breast Cancer

  • Su, Min;Huang, Chun-Xia;Dai, Ai-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.905-910
    • /
    • 2016
  • Breast cancer is one of the major threats to female health, and its incidence is rapidly increasing in many countries. Currently, breast cancer is treated with surgery, followed by chemotherapy or radiation therapy, or both. However, a substantial proportion of breast cancer patients might have a risk for local relapse that leads to recurrence of their disease and/or metastatic breast cancer. Therefore searching for new and potential strategies for breast cancer treatment remains necessary. Immunotherapy is an attractive and promising approach that can exploit the ability of the immune system to identify and destroy tumors and thus prevent recurrence and metastatic lesions. The most promising and attractive approach of immunotherapeutic research in cancer is the blockade of immune checkpoints. In this review, we discuss the potential of certain inhibitors of immune checkpoints, such as antibodies targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1) and lymphocyte activation gene-3 (LAG-3), in breast cancer therapeutics. Immune checkpoint inhibitors may represent future standards of care for breast cancer as monotherapy or combined with standard therapies.

siRNA-mediated Inhibition of hTERC Enhances Radiosensitivity of Cervical Cancer

  • Chen, Min;Xing, Li-Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.5975-5979
    • /
    • 2012
  • Background: To investigate the influence of telomerase activity, apoptosis, radiosensitivity of cervical cancer after siRNA-mediated knockdown of telomerase RNA and evaluate in vivo growth with gene interference. Methods: We studied siRNA-targeting-telomerase RNA transfection into the Hela cell line. Expression of hTERC mRNA was detected by RT-PCR and telomerase activity was measured by the TRAP assay. Growth inhibition was determined by MTT assay and radiosensitivity of the cervical cancer cells was examined by colony formation assay. In addtion, effects of hTERC inhibition in vivo were studied by injection of siRNA-transfected Hela cells into nude mice. Results: The hTERC siRNA effectively downregulated the expression of hTERC mRNA and also reduced the telomerase activity to 30% of the untreated control vlaue. The viability of hTERC siRNA transfected Hela cells was reduced by 44.7% after transfection. After radiation treatment, the radiosensitivity of Hela cells with hTERC knockdown was increased. In vivo, the tumors developing from the hTERC siRNA-transfected cells were of reduced size, indicating that the hTERT siRNA also depressed the tumorigenic potential of the Hela cells. Conclusions: Our results supported the concept of siRNA-mediated inhibition of telomerase mRNA which could inhibit the expression of hTERC and telomerase activity. Furthermore, radiosensitivity was upregulated after knockdown the hTERC in vivo and in vitro.

Distribution of Races of Soybean Cyst Nematode in Korea (국내 콩씨스트선충의 Race 분포)

  • 김동근;이재국;이영기
    • Korean journal of applied entomology
    • /
    • v.38 no.3
    • /
    • pp.249-253
    • /
    • 1999
  • To study races of Heterodera glycines in Korea, 21 soil samples were collected from eight provinces in 1995. Four races were found; race 3(48%) was a dominant race flowed by race 5(24%), race 1(19%), and race 6(9%). About 30~40% of H. glycines populations reproduced on Pickett and PI88788, while non reproduced on Peking or PI90763. Development of resistant soybean cultivar targeting to race 5 and 6 of H. glycines using PI90763 and PI88788 as a parent is recommended.

  • PDF

Embryo transfer in Korean Native Black Goat;Embryo recovery and transfer for the production of transgenic goat (한국재래흑염소 수정란의 이식;형질전환 흑염소 생산을 위한 수정란의 채취와 이식)

  • Shin, Sang-Tae
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2000.05a
    • /
    • pp.64-75
    • /
    • 2000
  • During the last three decades considerable advances has been made in goat embryo production and transfer technology. The Korean native black goat is the most useful domestic ruminant in this country for biological investigation and application because it has a lot of merits such as relatively short generation period (1 vs 2 year for a cow), easy of handling, well adaptation, high fertility, convenient and inexpensive. This article covers the methods of superovulation, estrus synchronization, embryo collection and transfer techniques, pregnancy diagnosis and subsequent pregnancy and kidding rates for the production of transgenic Korean native black goats. More than one hundred goat kids have been produced as a result of our transgenic goat project via microinjection of foreign gene into pronuclei, in vitro culture, transfer of various stages of fresh and frozen-thawed microinjected embryos into oviducts or uteri of recipient does. We have got two transgenic goats carrying a transgene targeting the expression of recombinant human granulocyte colony stimulating factor (hG-CSF) to the mammary gland so far. Since collection and transfer of embryos in this species is usually accomplished by laparotomy, exteriorization of the reproductive tract for surgical embryo collection leads to the formation of post-operative adhesions. Nonsurgical or laparoscopic technique to reduce adhesions from repeated surgeries has great advantages in improving embryo production and transfer especially from valuable donors. We will discuss this later.

  • PDF

MicroRNA-328 Inhibits Proliferation of Human Melanoma Cells by Targeting TGFB2

  • Li, Jing-Rong;Wang, Jian-Qin;Gong, Qing;Fang, Rui-Hua;Guo, Yun-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1575-1579
    • /
    • 2015
  • Some microRNAs (miRNAs) have been shown to act as oncogenes or tumor suppressor genes in human melanomas. miR-328 is upregulated in blood cells of melanoma patients compared to in healthy controls. This suggests a role for miR-328 in melanoma that warrants investigation. In this study, we demonstrated miR-328 levels to be dramatically decreased in human melanoma cell lines. Moreover, forced expression of miR-328 inhibited proliferation and induced G1-phase arrest of the SK-MEL-1 melanoma cell line. We identified TGFB2 as a direct target gene for miR-328 using a fluorescent reporter assay and western blotting. Levels of TGFB2 were dramatically increased in human melanoma cell lines and were inversely correlated with the miR-328 expression level. Our findings provide new insights into the mechanisms of human melanoma development, indicating that miR-328 has therapeutic potential for this disease.