References
- Mertz W. 1982. Trace elements and minerals in diabetes. In Diabetes Mellitus and Obesity. Brodoff BN, Bleicher SJ, eds. Williams & Wilkins, Baltimore, MD, USA. p 343-348.
- Maret W. 2016. Metallomics: a primer of integrated biometal sciences. Imperial College Press, London, UK.
- Mertz W. 1981. The essential trace elements. Science 213: 1332-1338. https://doi.org/10.1126/science.7022654
- Nielsen FH. 2014. Should bioactive trace elements not recognized as essential, but with beneficial health effects, have intake recommendations. J Trace Elem Med Biol 28: 406-408. https://doi.org/10.1016/j.jtemb.2014.06.019
- Vincent JB. 2013. The bioinorganic chemistry of chromium. John Wiley & Sons, Inc., Chichester, West Sussex, UK.
- McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG. 2014. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157: 1380-1392. https://doi.org/10.1016/j.cell.2014.05.009
- Maret W. 2016. The metals in the biological periodic system of the elements: concepts and conjectures. Int J Mol Sci 17: 66. https://doi.org/10.3390/ijms17010066
- Maret W, Moulis JM. 2013. The bioinorganic chemistry of cadmium in the context of its toxicity. In Metal Ions in Life Sciences. Sigel A, Sigel H, Sigel RKO, eds. Springer Science+ Business Media BV, Dordrecht, The Netherlands. Vol 11, p 1-29.
- Maret W. 2017. The bioinorganic chemistry of lead in the context of its toxicity. In Metal Ions in Life Sciences. Sigel A, Sigel H, Sigel RKO, eds. De Gruyter, Berlin, Germany. Vol 17, in press.
-
El Muayed M, Raja MR, Zhang X, MacRenaris KW, Bhatt S, Chen X, Urbanek M, O'Halloran TV, Lowe WL Jr. 2012. Accumulation of cadmium in insulin-producing
${\beta}$ cells. Islets 4: 405-416. https://doi.org/10.4161/isl.23101 -
Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I. 2012. Histidine pairing at the metal transport site of mammalian ZnT transporters controls
$Zn^{2+}$ over$Cd^{2+}$ selectivity. Proc Natl Acad Sci USA 109: 7202-7207. https://doi.org/10.1073/pnas.1200362109 - Siddiqui K, Bawazeer N, Joy SS. 2014. Variation in macro and trace elements in progression of type 2 diabetes. Sci World J 2014: 461591.
- Tosiello L. 1996. Hypomagnesemia and diabetes mellitus: a review of clinical implications. Arch Intern Med 156: 1143-1148. https://doi.org/10.1001/archinte.1996.00440100029005
- Salgueiro MJ, Krebs N, Zubillaga MB, Weill R, Postaire E, Lysionek AE, Caro RA, De Paoli T, Hager A, Boccio J. 2001. Zinc and diabetes mellitus: is there a need of zinc supplementation in diabetes mellitus patients?. Biol Trace Elem Res 81: 215-228. https://doi.org/10.1385/BTER:81:3:215
- Praveeena S, Pasula S, Sameera K. 2013. Trace elements in diabetes mellitus. J Clin Diagn Res 7: 1863-1865.
- Kruse-Jarres JD, Ruckgauer M. 2000. Trace elements in diabetes mellitus. Peculiarities and clinical validity of determinations in blood cells. J Trace Elem Med Biol 14: 21-27. https://doi.org/10.1016/S0946-672X(00)80019-X
- Himsworth HP. 1936. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. The Lancet 227: 127-130. https://doi.org/10.1016/S0140-6736(01)36134-2
- King JC. 2011. Zinc: an essential but elusive nutrient. Am J Clin Nutr 94: 679S-684S. https://doi.org/10.3945/ajcn.110.005744
- Maret W. 2013. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4: 82-91. https://doi.org/10.3945/an.112.003038
- Hogstrand C, Maret W. 2016. Genetics of human zinc deficiencies. In eLS: Essential for Life Science. John Wiley & Sons, Inc., Chichester, West Sussex, UK. p 1-8.
- Raudenska M, Gumulec J, Podlaha O, Sztalmachova M, Babula P, Eckschlager T, Adam V, Kizek R, Masarik M. 2014. Metallothionein polymorphisms in pathological processes. Metallomics 6: 55-68. https://doi.org/10.1039/C3MT00132F
- Scott DA, Fisher AM. 1938. The insulin and the zinc content of normal and diabetic pancreas. J Clin Invest 17: 725-728. https://doi.org/10.1172/JCI101000
- Chausmer AB. 1998. Zinc, insulin and diabetes. J Am Coll Nutr 17: 109-115. https://doi.org/10.1080/07315724.1998.10718735
- Tallman DL, Taylor CG. 1999. Potential interactions of zinc in the neuroendocrine-endocrine disturbances of diabetes mellitus type 2. Can J Physiol Pharmacol 77: 919-933. https://doi.org/10.1139/y99-111
- Maret W. 2005. Zinc and diabetes. Biometals 18: 293-294. https://doi.org/10.1007/s10534-005-3684-z
- Suckale J, Solimena M. 2010. The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21: 599-609. https://doi.org/10.1016/j.tem.2010.06.003
- Schvartz D, Brunner Y, Coute Y, Foti M, Wollheim CB, Sanchez JC. 2012. Improved characterization of the insulin secretory granule proteomes. J Proteomics 75: 4620-4631. https://doi.org/10.1016/j.jprot.2012.04.023
- Hutton JC, Penn EJ, Peshavaria M. 1983. Low-molecularweight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210: 297-305. https://doi.org/10.1042/bj2100297
- Dunn MF. 2005. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer-a review. Biometals 18: 295-303. https://doi.org/10.1007/s10534-005-3685-y
- Ishihara H, Wollheim CB. 2016. Is zinc an intra-islet regulator of glucagon secretion?. Diabetol Int 7: 106-110. https://doi.org/10.1007/s13340-016-0259-x
- Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A, Shimizu T, Mita T, Kanazawa A, Imaizumi MO, Abe T, Kiyonari H, Hojyo S, Fukada T, Kawauchi T, Nagamatsu S, Hirano T, Kawamori R, Watada H. 2013. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123: 4513-4524. https://doi.org/10.1172/JCI68807
- Gavrilova J, Tougu V, Palumaa P. 2014. Affinity of zinc and copper ions for insulin monomers. Metallomics 6: 1296-1300. https://doi.org/10.1039/C4MT00059E
- Keltner Z, Meyer JA, Johnson EM, Palumbo AM, Spence DM, Reid GE. 2010. Mass spectrometric characterization and activity of zinc-activated proinsulin C-peptide and C-peptide mutants. Analyst 135: 278-288. https://doi.org/10.1039/B917600D
- Brender JR, Hartman K, Nanga RPR, Popovych N, de la Salud Bea R, Vivekanandan S, Marsh ENG, Ramamoorthy A. 2010. Role of zinc in human islet amyloid polypeptide aggregation. J Am Chem Soc 132: 8973-8983. https://doi.org/10.1021/ja1007867
-
Wineman-Fisher V, Miller Y. 2016. Effect of
$Zn^{2+}$ ions on the assembly of amylin oligomers: insight into the molecular mechanisms. Phys Chem Chem Phys 18: 21590-21599. https://doi.org/10.1039/C6CP04105A - Landreh M, Alvelius G, Johansson J, Jornvall H. 2014. Insulin, islet amyloid polypeptide and C-peptide interactions evaluated by mass spectrometric analysis. Rapid Commun Mass Spectrom 28: 178-184. https://doi.org/10.1002/rcm.6772
- Egefjord L, Bak AM, Petersen AB, Rungby J. 2010. Zinc, alpha cells and glucagon secretion. Curr Diabetes Rev 6: 52-57. https://doi.org/10.2174/157339910790442655
-
Chimienti F, Devergnas S, Favier A, Seve M. 2004. Identification and cloning of a
${\beta}$ -cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53: 2330-2337. https://doi.org/10.2337/diabetes.53.9.2330 -
Solomou A, Meur G, Bellomo E, Hodson DJ, Tomas A, Li SM, Philippe E, Herrera PL, Magnan C, Rutter GA. 2015. The zinc transporter Slc30a8/ZnT8 is required in a subpopulation of pancreatic
${\alpha}$ -cells for hypoglycemia-induced glucagon secretion. J Biol Chem 290: 21432-21442. https://doi.org/10.1074/jbc.M115.645291 - Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, Rewers M, Eisenbarth GS, Jensen J, Davidson HW, Hutton JC. 2007. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 104: 17040-17045. https://doi.org/10.1073/pnas.0705894104
-
Davidson HW, Wenzlau JM, O'Brien RM. 2014. Zinc transporter 8 (ZnT8) and
${\beta}$ cell function . Trends Endocrinol Metab 25: 415-424. https://doi.org/10.1016/j.tem.2014.03.008 - Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, Mahajan A, Fuchsberger C, Atzmon G, Benediktsson R, Blangero J, Bowden DW, Brandslund I, Brosnan J, Burslem F, Chambers J, Cho YS, Christensen C, Douglas DA, Duggirala R, Dymek Z, Farjoun Y, Fennell T, Fontanillas P, Forsen T, Gabriel S, Glaser B, Gudbjartsson DF, Hanis C, Hansen T, Hreidarsson AB, Hveem K, Ingelsson E, Isomaa B, Johansson S, Jorgensen T, Jorgensen ME, Kathiresan S, Kong A, Kooner J, Kravic J, Laakso M, Lee JY, Lind L, Lindgren CM, Linneberg A, Masson G, Meitinger T, Mohlke KL, Molven A, Morris AP, Potluri S, Rauramaa R, Ribel-Madsen R, Richard AM, Rolph T, Salomaa V, Segre AV, Skarstrand H, Steinthorsdottir V, Stringham HM, Sulem P, Tai ES, Teo YY, Teslovich T, Thorsteinsdottir U, Trimmer JK, Tuomi T, Tuomilehto J, Vaziri-Sani F, Voight BF, Wilson JG, Boehnke M, McCarthy MI, Njolstad PR, Pedersen O; Go-T2D Consortium; T2D-GENES Consortium, Groop L, Cox DR, Stefansson K, Altshuler D. 2014. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46: 357-363. https://doi.org/10.1038/ng.2915
- Merriman C, Huang Q, Rutter GA, Fu D. 2016. Lipid-tuned zinc transport activity of human ZnT8 protein correlates with risk for type-2 diabetes. J Biol Chem 291: 26950-26957. https://doi.org/10.1074/jbc.M116.764605
- Rutter GA, Chimienti F. 2015. SLC30A8 mutations in type 2 diabetes. Diabetologia 58: 31-36. https://doi.org/10.1007/s00125-014-3405-7
- Quarterman J, Mills CF, Humphries WR. 1966. The reduced secretion of, and sensitivity to insulin in zinc-deficient rats. Biochem Biophys Res Commun 25: 354-358. https://doi.org/10.1016/0006-291X(66)90785-6
- Coulston L, Dandona P. 1980. Insulin-like effect of zinc on adipocytes. Diabetes 29: 665-667. https://doi.org/10.2337/diab.29.8.665
- Wong VV, Nissom PM, Sim SL, Yeo JH, Chuah SH, Yap MGS. 2005. Zinc as an insulin replacement in hybridoma cultures. Biotechnol Bioeng 93: 553-563.
- Haase H, Maret W. 2003. Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291: 289-298. https://doi.org/10.1016/S0014-4827(03)00406-3
- Haase H, Maret W. 2005. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 18: 333-338. https://doi.org/10.1007/s10534-005-3707-9
- Bellomo E, Massarotti A, Hogstrand C, Maret W. 2014. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 6: 1229-1239. https://doi.org/10.1039/C4MT00086B
- Bellomo E, Singh KB, Massarotti A, Hogstrand C, Maret W. 2016. The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 327-328: 70-83. https://doi.org/10.1016/j.ccr.2016.07.002
- Tang X, Shay NF. 2001. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr 131: 1414-1420. https://doi.org/10.1093/jn/131.5.1414
- Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P. 2012. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5: ra11.
-
Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ. 2004. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of
$H_2O_2$ and plays an integral role in insulin signal transduction. Mol Cell Biol 24: 1844-1854. https://doi.org/10.1128/MCB.24.5.1844-1854.2004 - Baynes JW. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405-412.
- Gerber PA, Rutter GA. 2016. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal DOI: 10.1089/ars.2016.6755.
- Houstis N, Rosen ED, Lander ES. 2006. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440: 944-948. https://doi.org/10.1038/nature04634
- Maret W. 2006. Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8: 1419-1441. https://doi.org/10.1089/ars.2006.8.1419
- Maret W. 2008. Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 43: 363-369. https://doi.org/10.1016/j.exger.2007.11.005
- Oteiza PI. 2012. Zinc and the modulation of redox homeostasis. Free Radic Biol Med 53: 1748-1759. https://doi.org/10.1016/j.freeradbiomed.2012.08.568
-
Ayaz M, Turan B. 2006. Selenium prevents diabetes-induced alterations in
$[Zn^{2+}]_i$ and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 290: H1071-H1080. https://doi.org/10.1152/ajpheart.00754.2005 -
Gerber PA, Bellomo EA, Hodson DJ, Meur G, Solomou A, Mitchell RK, Hollinshead M, Chimienti F, Bosco D, Hughes SJ, Johnson PR, Rutter GA. 2014. Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic
$Zn^{2+}$ in pancreatic beta cells. Diabetologia 57: 1635-1644. https://doi.org/10.1007/s00125-014-3266-0 - Chabosseau P, Rutter GA. 2016. Zinc and diabetes. Arch Biochem Biophys 611: 79-85. https://doi.org/10.1016/j.abb.2016.05.022
- Hao Q, Maret W. 2006. Aldehydes release zinc from proteins. A pathway from oxidative stress/lipid peroxidation to cellular functions of zinc. FEBS J 273: 4300-4310. https://doi.org/10.1111/j.1742-4658.2006.05428.x
- Maret W. 2011. Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem 16: 1079-1086. https://doi.org/10.1007/s00775-011-0800-0
- Li X, Cai L, Feng W. 2007. Diabetes and metallothionein. Mini Rev Med Chem 7: 761-768. https://doi.org/10.2174/138955707781024490
- Giacconi R, Bonfigli AR, Testa R, Sirolla C, Cipriano C, Marra M, Muti E, Malavolta M, Costarelli L, Piacenza F, Tesei S, Mocchegiani E. 2008. +647 A/C and +1245 MT1A polymorphisms in the susceptibility of diabetes mellitus and cardiovascular complications. Mol Genet Metab 94: 98-104. https://doi.org/10.1016/j.ymgme.2007.12.006
- Pauling L. 1968. Orthomolecular psychiatry. Varying the concentrations of substances normally present in the human body may control mental disease. Science 160: 265-271. https://doi.org/10.1126/science.160.3825.265
- Maret W, Sandstead HH. 2006. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20: 3-18. https://doi.org/10.1016/j.jtemb.2006.01.006
- Sakurai H, Adachi Y. 2005. The pharmacology of the insulinomimetic effect of zinc complexes. Biometals 18: 319-323. https://doi.org/10.1007/s10534-005-3688-8
- Vardatsikos G, Pandey NR, Srivastava AK. 2013. Insulinomimetic and anti-diabetic effects of zinc. J Inorg Biochem 120: 8-17. https://doi.org/10.1016/j.jinorgbio.2012.11.006
- Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW, Singh T, Cardozo LJ. 2010. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 91: 1634-1641. https://doi.org/10.3945/ajcn.2009.28836
- El Dib R, Gameiro OL, Ogata MS, Modolo NS, Braz LG, Jorge EC, do Nascimento P Jr, Beletate V. 2015. Zinc supplementation for the prevention of type 2 diabetes mellitus in adults with insulin resistance. Cochrane Database Syst Rev 5: CD005525.
- Chu A, Foster M, Samman S. 2016. Zinc status and risk of cardiovascular diseases and type 2 diabetes mellitus-a systematic review of prospective cohort studies. Nutrients 8: 707. https://doi.org/10.3390/nu8110707
- Ruz M, Carrasco F, Sanchez A, Perez A, Rojas P. 2016. Does zinc really "metal" with diabetes? The epidemiologic evidence. Curr Diab Rep 16: 111. https://doi.org/10.1007/s11892-016-0803-x
Cited by
- Expression of the ZIP/SLC39A transporters in β-cells: a systematic review and integration of multiple datasets vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-4119-2
- Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy 2017, https://doi.org/10.1002/biof.1386
- Zinc Signals and Immunity vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102222
- Zinc in Cellular Regulation: The Nature and Significance of “Zinc Signals” vol.18, pp.11, 2017, https://doi.org/10.3390/ijms18112285
- The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020439
- Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020476
- vol.221, pp.6, 2018, https://doi.org/10.1242/jeb.168419
- Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0191727
- Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology pp.1756-591X, 2019, https://doi.org/10.1039/C8MT00221E
- Solute Carrier Family 30 Member 8 Gene 807C/T Polymorphism and Type 2 Diabetes Mellitus in the Chinese Population: A Meta-Analysis Including 6,942 Subjects vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00263
- Total plasma magnesium, zinc, copper and selenium concentrations in type-I and type-II diabetes vol.32, pp.1, 2019, https://doi.org/10.1007/s10534-018-00167-z
- Effect of Maillard Reaction Products on Inhibition of Burdock Polyphenol Oxidase and Their Antioxidant Activities vol.30, pp.5, 2017, https://doi.org/10.9799/ksfan.2017.30.5.853
- Crosstalk between zinc and free fatty acids in plasma vol.1864, pp.4, 2017, https://doi.org/10.1016/j.bbalip.2018.09.007
- Analysis of Metal Effects on C‐Peptide Structure and Internalization vol.20, pp.19, 2017, https://doi.org/10.1002/cbic.201900172
- Zinc Homeostasis in Platelet-Related Diseases vol.20, pp.21, 2017, https://doi.org/10.3390/ijms20215258
- High-precision isotopic analysis of serum and whole blood Cu, Fe and Zn to assess possible homeostasis alterations due to bariatric surgery vol.412, pp.3, 2017, https://doi.org/10.1007/s00216-019-02291-2
- Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease vol.72, pp.1, 2017, https://doi.org/10.1124/pr.118.015735
- Biological investigations on therapeutic effect of chitosan encapsulated nano resveratrol against gestational diabetes mellitus rats induced by streptozotocin vol.27, pp.1, 2017, https://doi.org/10.1080/10717544.2020.1775722
- Cysteine Prevents the Development of Experimental Diabetes Induced by Zinc-Binding Substances vol.168, pp.5, 2017, https://doi.org/10.1007/s10517-020-04765-1
- Aza‐ and Mixed Thia/Aza‐Macrocyclic Receptors with Quinoline‐Bearing Pendant Arms for Optical Discrimination of Zinc(II) or Cadmium(II) Ions vol.85, pp.8, 2017, https://doi.org/10.1002/cplu.202000444
- Effects of Dose and Duration of Zinc Interventions on Risk Factors for Type 2 Diabetes and Cardiovascular Disease: A Systematic Review and Meta-Analysis vol.12, pp.1, 2017, https://doi.org/10.1093/advances/nmaa087
- Effect of Mg doping on morphology, photocatalytic activity and related biological properties of Zn 1−x Mg x O nanoparticles vol.44, pp.4, 2017, https://doi.org/10.3906/kim-2004-9
- Chronic pancreatitis in farmed pigs fed excessive zinc oxide vol.32, pp.5, 2017, https://doi.org/10.1177/1040638720944368
- Differential Roles of Extracellular Histidine Residues of GPR68 for Proton-Sensing and Allosteric Modulation by Divalent Metal Ions vol.59, pp.38, 2020, https://doi.org/10.1021/acs.biochem.0c00576
- Zn2+ ions inhibit gene transcription following stimulation of the Ca2+ channels Cav1.2 and TRPM3 vol.12, pp.11, 2020, https://doi.org/10.1039/d0mt00180e
- Gestational Cd Exposure in the CD-1 Mouse Induces Sex-Specific Hepatic Insulin Insensitivity, Obesity, and Metabolic Syndrome in Adult Female Offspring vol.178, pp.2, 2017, https://doi.org/10.1093/toxsci/kfaa154
- Polymorphisms in MMP-1 , MMP-2 , MMP-7, MMP-13 and MT2A do not contribute to breast, lung and colon cancer risk in polish population vol.18, pp.1, 2020, https://doi.org/10.1186/s13053-020-00147-w
- Elements alteration in scalp hair of young obese Saudi females vol.28, pp.1, 2017, https://doi.org/10.1080/25765299.2021.1911070
- Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and above Metal Homeostasis and Antioxidant Response vol.10, pp.3, 2017, https://doi.org/10.3390/biology10030176
- Quercetin/Zinc complex and stem cells: A new drug therapy to ameliorate glycometabolic control and pulmonary dysfunction in diabetes mellitus: Structural characterization and genetic studies vol.16, pp.3, 2021, https://doi.org/10.1371/journal.pone.0246265
- Zinc and the Innovative Zinc-α2-Glycoprotein Adipokine Play an Important Role in Lipid Metabolism: A Critical Review vol.13, pp.6, 2021, https://doi.org/10.3390/nu13062023
- Zinc status, insulin resistance and glycoxidative stress in elderly subjects with type 2 diabetes mellitus vol.22, pp.6, 2017, https://doi.org/10.3892/etm.2021.10829
- The effects of Cuminum cyminum on glycemic parameters: A systematic review and meta-analysis of controlled clinical trials vol.281, pp.None, 2017, https://doi.org/10.1016/j.jep.2021.114510
- The Bioinorganic Chemistry of Mammalian Metallothioneins vol.121, pp.23, 2021, https://doi.org/10.1021/acs.chemrev.1c00371