• Title/Summary/Keyword: Gene Targeting

Search Result 474, Processing Time 0.021 seconds

Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice

  • Choi, Yeounju;Kim, Namgyu;Mannaa, Mohamed;Kim, Hongsup;Park, Jungwook;Jung, Hyejung;Han, Gil;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.289-296
    • /
    • 2020
  • Type VI secretion system (T6SS) is a contact-dependent secretion system, employed by most gram-negative bacteria for translocating effector proteins to target cells. The present study was conducted to investigate T6SS in Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice, and to unveil its functions. Two T6SS clusters were found in the genome of Xoo PXO99A. The deletion mutants, Δhcp1, Δhcp2, and Δhcp12, targeting the hcp gene in each cluster, and a double-deletion mutant targeting both genes were constructed and tested for growth rate, pathogenicity to rice, and inter-bacterial competition ability. The results indicated that hcp in T6SS-2, but not T6SS-1, was involved in bacterial virulence to rice plants. However, neither T6SS-1 nor T6SS-2 had any effect on the ability to compete with Escherichia coli or other bacterial cells. In conclusion, T6SS gene clusters in Xoo have been characterized, and its role in virulence to rice was confirmed.

A Field Deployable Real-Time Loop-Mediated Isothermal Amplification Targeting Five Copy nrdB Gene for the Detection of 'Candidatus Liberibacter asiaticus' in Citrus

  • Tirumalareddy Danda;Jong-Won Park;Kimberly L. Timmons;Mamoudou Setamou;Eliezer S. Louzada;Madhurababu Kunta
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.309-318
    • /
    • 2023
  • Huanglongbing (HLB) is one of the most destructive diseases in citrus, which imperils the sustainability of citriculture worldwide. The presumed causal agent of HLB, 'Candidatus Liberibacter asiaticus' (CLas) is a non-culturable phloem-limited α-proteobacterium transmitted by Asian citrus psyllids (ACP, Diaphorina citri Kuwayama). A widely adopted method for HLB diagnosis is based on quantitative real-time polymerase chain reaction (qPCR). Although HLB diagnostic qPCR provides high sensitivity and good reproducibility, it is limited by time-consuming DNA preparation from plant tissue or ACP and the requirement of proper lab instruments including a thermal cycler to conduct qPCR. In an attempt to develop a quick assay that can be deployed in the field for CLas detection, we developed a real-time loop-mediated isothermal amplification (rt-LAMP) assay by targeting the CLas five copy nrdB gene. The rt-LAMP assay using various plant sample types and psyllids successfully detected the nrdB target as low as ~2.6 Log10 copies. Although the rt-LAMP assay was less sensitive than laboratory-based qPCR (detection limit ~10 copies), the data obtained with citrus leaf and bark and ACP showed that the rt-LAMP assay has >96% CLas detection rate, compared to that of laboratory-based qPCR. However, the CLas detection rate in fibrous roots was significantly decreased compared to qPCR due to low CLas titer in some root DNA sample. We also demonstrated that the rt-LAMP assay can be used with a crude leaf DNA extract which is fully deployable in the field for quick and reliable HLB screening.

TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets

  • Sun Murray Han;Hye Young Na;Onju Ham;Wanho Choi;Moah Sohn;Seul Hye Ryu;Hyunju In;Ki-Chul Hwang;Chae Gyu Park
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24+ cDC1 cells compared to in pDCs and CD172α+ cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s).

In vivo multiplex gene targeting with Streptococcus pyogens and Campylobacter jejuni Cas9 for pancreatic cancer modeling in wild-type animal

  • Chang, Yoo Jin;Bae, Jihyeon;Zhao, Yang;Lee, Geonseong;Han, Jeongpil;Lee, Yoon Hoo;Koo, Ok Jae;Seo, Sunmin;Choi, Yang-Kyu;Yeom, Su Cheong
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.26.1-26.14
    • /
    • 2020
  • Pancreatic ductal adenocarcinoma is a lethal cancer type that is associated with multiple gene mutations in somatic cells. Genetically engineered mouse is hardly applicable for developing a pancreatic cancer model, and the xenograft model poses a limitation in the reflection of early stage pancreatic cancer. Thus, in vivo somatic cell gene engineering with clustered regularly interspaced short palindromic repeats is drawing increasing attention for generating an animal model of pancreatic cancer. In this study, we selected Kras, Trp53, Ink4a, Smad4, and Brca2 as target genes, and applied Campylobacter jejuni Cas9 (CjCas9) and Streptococcus pyogens Cas9 (SpCas9) for developing pancreatic cancer using adeno associated virus (AAV) transduction. After confirming multifocal and diffuse transduction of AAV2, we generated SpCas9 overexpression mice, which exhibited high double-strand DNA breakage (DSB) in target genes and pancreatic intraepithelial neoplasia (PanIN) lesions with two AAV transductions; however, wild-type (WT) mice with three AAV transductions did not develop PanIN. Furthermore, small-sized Cjcas9 was applied to WT mice with two AAV system, which, in addition, developed high extensive DSB and PanIN lesions. Histological changes and expression of cancer markers such as Ki67, cytokeratin, Mucin5a, alpha smooth muscle actin in duct and islet cells were observed. In addition, the study revealed several findings such as 1) multiple DSB potential of AAV-CjCas9, 2) peri-ductal lymphocyte infiltration, 3) multi-focal cancer marker expression, and 4) requirement of > 12 months for initiation of PanIN in AAV mediated targeting. In this study, we present a useful tool for in vivo cancer modeling that would be applicable for other disease models as well.

Detection of Microcystin Synthetic Cyanobacteria and Variation of Intracellular Microcystin Synthesis Using by eDNA and eRNA in Freshwater Ecocystem (담수환경에서 eDNA와 eRNA를 이용한 Microcystin 합성 남조류 탐색 및 세포 내 Microcystin 생합성 활성 변화)

  • Keonhee Kim;Chaehong Park;Hyeonjin Cho;Daeryul Kwon;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Targeting Microcystin (MC), which is most abundantly detected in the North-Han River water area, we analyzed the relationship between the MC biosynthesis gene (mcyA gene), cyanobacteria cell density, and MC concentration, derived an RNA-MC conversion formula, and derived the cyanobacteria. The concentration of MC present in cells was predicted. In the North-Han River waters, the mcyA gene was found mainly at downstream sites of the North-Han River after Muk-Hyeon Stream junction, and higher copy numbers were found on average than other sites. In the Uiam Lake waters upstream of the North-Han River, the mcyA gene copy number increased at the Kong-Ji Stream point, and after September, the mcyA gene copy number decreased throughout the North-Han River waters. The expression of the mcyA gene was concentrated in the short period of summer due to the spatio-temporal difference between upstream and downstream water bodies. The mcyA gene expression level was not only highly correlated with MC concentration, but also correlated with the cell density of Microcystis aeruginosa and Dolichospermum circinale, which are known to biosynthesize MC. Six conversion formulas derived based on the RNA-MC relationship showed statistical significance (p<0.05) and exhibited high correlation coefficients (r) of 0.9 or higher. The expression level of MC biosynthesis gene present in eRNA determines the synthesis of cyanotoxin substances in water, quickly quantifies gene activity, and can be fully utilized for early warning of MC development.

Targeting HSP90 Gene Expression with 17-DMAG Nanoparticles in Breast Cancer Cells

  • Mellatyar, Hassan;Talaei, Sona;Nejati-Koshki, Kazem;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2453-2457
    • /
    • 2016
  • Background: Dysregulation of HSP90 gene expression is known to take place in breast cancer. Here we used D,L-lactic-co-glycolic acid-polyethylene glycol-17-dimethylaminoethylamino-17-demethoxy geldanamycin (PLGA-PEG-17DMAG) complexes and free 17-DMAG to inhibit the expression of HSP90 gene in the T47D breast cancer cell line. The purpose was to determine whether nanoencapsulating 17DMAG improves the anti-cancer effects as compared to free 17DMAG. Materials and Methods: The T47D breast cancer cell line was grown in RPMI 1640 supplemented with 10% FBS. Encapsulation of 17DMAG was conducted through a double emulsion method and properties of copolymers were characterized by Fourier transform infrared spectroscopy and H nuclear magnetic resonance spectroscopy. Assessment of drug cytotoxicity was by MTT assay. After treatment of T47D cells with a given amount of drug, RNA was extracted and cDNA was synthesized. In order to assess HSP90 gene expression, real-time PCR was performed. Results: Taking into account drug load, IC50 was significant decreased in nanocapsulated 17DMAG in comparison with free 17DMAG. This finding was associated with decrease of HSP90 gene expression. Conclusions: PLGA-PEG-17DMAG complexes can be more effective than free 17DMAG in down-regulating of HSP90 expression, at the saesm time exerting more potent cytotoxic effects. Therefore, PLGA-PEG could be a superior carrier for this type of hydrophobic agent.

Approaches to Improving Production Efficiencies of Transgenic Animals

  • Tojo, Hideaki
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.7-8
    • /
    • 2000
  • Transgenic animals are very useful for scientific, pharmaceutical, and agricultural purposes. In livestock, transgenic technology has been used forthe genetic alteration of farm animals, the production of human proteins inlarge quantities in the milk of transgenic farm animals, and the generation of animals with organs suitable for xenotransplantation. To date, the transfer of foreign genes into farm animals has been performed mainly by microinjection of DNA into the pronuclei of fertilized eggs. However, the overall success rate of transgenic animals in livestock so far has been disappointingly low, eg., the efficiency is 0∼5% in swine, and less than 1% in sheep and cattle, compared with the rate in mice where 5% microinjected develop into transgenic animals. Recently, McGreath et al. (2000) have succeeded in producing the gene targeted sheep by the use of nuclear transfer from cultured somatic cells transfected with a foreign gene in vitro. However, we may need plenty of time until currently employ this method for gene transfer to farm animals. We have been studying to exploit the method for improving production efficiencies of transgenic animals with emphasis of its application to farm animals. The present paper describes three approaches that we have made in our laboratory to improve production efficiencies of transgenic animals, based on the DNA microinjection method. 1. Co-injection of restriction enzyme with foreign DNA into the pronucleus for elevating production efficiencies of transgenic animals. 2. Efficient selection of transgenic mouse embryos using EGFP as a marker gene. 3. Phenotypes of tansgenic mice expressing WAP/hGH-CAG/EGFP fusion gene produced by selecting transgenic embryos. 4. Efficient site-specific integration of the transgene targeting an endogenous lox like site in early mouse embryos.

  • PDF

Host-Induced gene silencing of fungal pathogenic genes confer resistance to fungal pathogen, Magnaporthe Oryzae in rice

  • Jin, Byung Jun;Chun, Hyun Jin;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.134-134
    • /
    • 2017
  • Recently, host-induced gene silencing (HIGS) system has been successfully applied into development of resistant crops against insects, fungal and viral pathogens. To test HIGS-mediated resistance in rice against rice blast fungus, Magnaporthe oryzae, we first tested possibility of movement of small non-coding RNA from rice cells to rice blast fungus. The rice blast fungus expressing GFP transgene were inoculated to transgenic rice plants ectopically expressing dsRNAi construct targeting fungal GFP gene. Expression of dsRNAi construct for GFP gene in transgenic plants significantly suppressed GFP expression in infected fungal cells indicating that small RNAs generated in plant cells can move into infected fungal cells and efficiently suppress the expression of fungal GFP gene. Consistent with these results, expression of dsRNAi constructs against 3 fungal pathogenic genes of M. oryzae in transgenic rice specifically and efficiently suppressed not only the expression of fungal pathogenic genes, but also fungal infection. The conidia of M. oryzae applied on leaf sheath of transgenic rice expressing dsRNAs against 3 fungal pathogenic genes showed abnormal development of primary hyphae and malfunction of appressorium, which is consistent with the phenotypes of corresponding fungal knock-out mutants. Taken these results together, here, we suggest a novel strategy for development of antifungal crops by means of HIGS system.

  • PDF

Genetic Characterization of Molecular Targets in Korean Patients with Gastrointestinal Stromal Tumors

  • Park, Joonhong;Yoo, Han Mo;Sul, Hae Jung;Shin, Soyoung;Lee, Seung Woo;Kim, Jeong Goo
    • Journal of Gastric Cancer
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • Purpose: Gastrointestinal stromal tumors (GISTs) frequently harbor activating gene mutations in either KIT or platelet-derived growth factor receptor A (PDGFRA) and are highly responsive to several selective tyrosine kinase inhibitors. In this study, a targeted next-generation sequencing (NGS) assay with an Oncomine Focus Assay (OFA) panel was used for the genetic characterization of molecular targets in 30 Korean patients with GIST. Materials and Methods: Using the OFA that enables rapid and simultaneous detection of hotspots, single nucleotide variants (SNVs), insertion and deletions (Indels), copy number variants (CNVs), and gene fusions across 52 genes relevant to solid tumors, targeted NGS was performed using genomic DNA extracted from formalin-fixed and paraffin-embedded samples of 30 GISTs. Results: Forty-three hotspot/other likely pathogenic variants (33 SNVs, 8 Indels, and 2 amplifications) in 16 genes were identified in 26 of the 30 GISTs. KIT variants were most frequent (44%, 19/43), followed by 6 variants in PIK3CA, 3 in PDGFRA, 2 each in JAK1 and EGFR, and 1 each in AKT1, ALK, CCND1, CTNNB1, FGFR3, FGFR4, GNA11, GNAQ, JAK3, MET, and SMO. Based on the mutation types, majority of the variants carried missense mutations (60%, 26/43), followed by 8 frameshifts, 6 nonsense, 1 stop-loss, and 2 amplifications. Conclusions: Our study confirmed the advantage of using targeted NGS with a cancer gene panel to efficiently identify mutations associated with GISTs. These findings may provide a molecular genetic basis for developing new drugs targeting these gene mutations for GIST therapy.

Direct Identification of Vibrio vulnificus by PCR Targeting Elastase Gene

  • Lee, Jae-Won;Jun, In-Joon;Kwun, Hyun-Jin;Jang, Kyung-Lib;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.284-289
    • /
    • 2004
  • A PCR assay for the rapid detection of Vibrio vulnificus strains was developed using a virulence gene for elastase found in various Vibrio species. The DNA sequences in the elastase gene facilitated the identification of a species-specific probe for pathogenic V. vulnificus strains from both clinical and environmental sources. Using an elastase gene-based PCR reaction, a species-specific 507-bp PCR product was visualized by agarose gel electrophoresis. Three different DNA extraction methods were then compared to improve the simplicity and rapidity of detection. A PCR assay using the conventional DNA extraction or boiling method was able to detect as few as 25 V. vulnificus cells, making the detection limits at least 1-log-scale lower than that for the EDT A-treated DNA extraction method. In particular, the boiling method, which does not require purification of the chromosomal DNA, was very effective in terms of simple and rapid detection. Meanwhile, the detection limit in a mixed bacterial culture that included other bacteria, such as Escherichia coli or Bacillus subtilis, was two V. vulnificus cells, which was 1-log-scale lower than that for the control. Accordingly, when coupled with a new DNA extraction method, the elastase gene-based PCR can provide a rapid, specific, and sensitive method for identifying V. vulnificus in clinical and environmental samples.