DOI QR코드

DOI QR Code

Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice

  • Choi, Yeounju (Department of Integrated Biological Science, Pusan National University) ;
  • Kim, Namgyu (Department of Integrated Biological Science, Pusan National University) ;
  • Mannaa, Mohamed (Department of Integrated Biological Science, Pusan National University) ;
  • Kim, Hongsup (Korea Seed & Variety Serv, Seed Testing & Res Ctr) ;
  • Park, Jungwook (Department of Integrated Biological Science, Pusan National University) ;
  • Jung, Hyejung (Department of Integrated Biological Science, Pusan National University) ;
  • Han, Gil (Department of Integrated Biological Science, Pusan National University) ;
  • Lee, Hyun-Hee (Department of Integrated Biological Science, Pusan National University) ;
  • Seo, Young-Su (Department of Integrated Biological Science, Pusan National University)
  • Received : 2020.02.07
  • Accepted : 2020.04.28
  • Published : 2020.06.01

Abstract

Type VI secretion system (T6SS) is a contact-dependent secretion system, employed by most gram-negative bacteria for translocating effector proteins to target cells. The present study was conducted to investigate T6SS in Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice, and to unveil its functions. Two T6SS clusters were found in the genome of Xoo PXO99A. The deletion mutants, Δhcp1, Δhcp2, and Δhcp12, targeting the hcp gene in each cluster, and a double-deletion mutant targeting both genes were constructed and tested for growth rate, pathogenicity to rice, and inter-bacterial competition ability. The results indicated that hcp in T6SS-2, but not T6SS-1, was involved in bacterial virulence to rice plants. However, neither T6SS-1 nor T6SS-2 had any effect on the ability to compete with Escherichia coli or other bacterial cells. In conclusion, T6SS gene clusters in Xoo have been characterized, and its role in virulence to rice was confirmed.

Keywords

References

  1. Aschtgen, M.-S., Gavioli, M., Dessen, A., Lloubes, R. and Cascales, E. 2010. The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol. Microbiol. 75:886-899. https://doi.org/10.1111/j.1365-2958.2009.07028.x
  2. Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. and Mekalanos, J. J. 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182-186. https://doi.org/10.1038/nature10846
  3. Bayer-Santos, E., Lima, L. D. P., Ceseti, L. M., Ratagami, C. Y., de Santana, E. S., da Silva, A. M., Farah, C. S. and Alvarez-Martinez, C. E. 2018. Xanthomonas citri T6SS mediates resistance to Dictyostelium predation and is regulated by an ECF $\sigma$ factor and cognate Ser/Thr kinase. Environ. Microbiol. 20:1562-1575. https://doi.org/10.1111/1462-2920.14085
  4. Bernard, C. S., Brunet, Y. R., Gueguen, E. and Cascales, E. 2010. Nooks and crannies in type VI secretion regulation. J. Bacteriol. 192:3850-3860. https://doi.org/10.1128/JB.00370-10
  5. Burtnick, M. N., Brett, P. J., Harding, S. V., Ngugi, S. A., Ribot, W. J., Chantratita, N., Scorpio, A., Milne, T. S., Dean, R. E., Fritz, D. L., Peacock, S. J., Prior, J. L., Atkins, T. P. and Deshazer, D. 2011. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect. Immun. 79:1512-1525. https://doi.org/10.1128/IAI.01218-10
  6. Das, A., Rangaraj, N. and Sonti, R. V. 2009. Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. Mol. Plant-Microbe Interact. 22:73-85. https://doi.org/10.1094/MPMI-22-1-0073
  7. Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E. A., Young, L., Qi, Z.-Q., Segall-Shapiro, T. H., Calvey, C. H., Parmar, P. P., Hutchison, C. A. 3rd., Smith, H. O. and Venter, J. C. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52-56. https://doi.org/10.1126/science.1190719
  8. Green, E. R. and Mecsas, J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4:VMBF-0012-2015.
  9. Haapalainen, M., Mosorin, H., Dorati, F., Wu, R.-F., Roine, E., Taira, S., Nissinen, R., Mattinen, L., Jackson, R., Pirhonen, M. and Lin, N.-C. 2012. Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J. Bacteriol. 194:4810-4822. https://doi.org/10.1128/JB.00611-12
  10. Hood, R. D., Singh, P., Hsu, F., Guvener, T., Carl, M. A., Trinidad, R. R. S., Silverman, J. M., Ohlson, B. B., Hicks, K. G., Plemel, R. L., Li, M., Schwarz, S., Wang, W. Y., Merz, A. J., Goodlett, D. R. and Mougous, J. D. 2010. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25-37. https://doi.org/10.1016/j.chom.2009.12.007
  11. Ishikawa, T., Rompikuntal, P. K., Lindmark, B., Milton, D. L. and Wai, S. N. 2009. Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS ONE 4:e6734. https://doi.org/10.1371/journal.pone.0006734
  12. Jani, A. J. and Cotter, P. A. 2010. Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8:2-6. https://doi.org/10.1016/j.chom.2010.06.012
  13. Joshi, A., Kostiuk, B., Rogers, A., Teschler, J., Pukatzki, S. and Yildiz, F. H. 2017. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol. 25:267-279. https://doi.org/10.1016/j.tim.2016.12.003
  14. Keshri, V., Singh, D. P., Prabha, R., Rai, A. and Sharma, A. K. 2014. Genome subtraction for the identification of potential antimicrobial targets in Xanthomonas oryzae pv. oryzae PXO99A pathogenic to rice. 3 Biotech 4:91-95. https://doi.org/10.1007/s13205-013-0131-7
  15. Leiman, P. G., Basler, M., Ramagopal, U. A., Bonanno, J. B., Sauder, J. M., Pukatzki, S., Burley, S. K., Almo, S. C. and Mekalanos, J. J. 2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl. Acad. Sci. U. S. A. 106:4154-4159. https://doi.org/10.1073/pnas.0813360106
  16. Lesic, B., Starkey, M., He, J., Hazan, R. and Rahme, L. G. 2009. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155:2845-2855. https://doi.org/10.1099/mic.0.029082-0
  17. Lien, Y. W. and Lai, E. M. 2017. Type VI secretion effectors: methodologies and biology. Front. Cell. Infect. Microbiol. 7:254. https://doi.org/10.3389/fcimb.2017.00254
  18. Liu, H., Coulthurst, S. J., Pritchard, L., Hedley, P. E., Ravensdale, M., Humphris, S., Burr, T., Takle, G., Brurberg, M.-B., Birch, P. R. J., Salmond, G. P. C. and Toth, I. K. 2008. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 4:e1000093. https://doi.org/10.1371/journal.ppat.1000093
  19. Ma, L.-S., Hachani, A., Lin, J.-S., Filloux, A. and Lai, E.-M. 2014. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16:94-104. https://doi.org/10.1016/j.chom.2014.06.002
  20. Mew, T. W., Alvarez, A. M., Leach, J. E. and Swings, J. 1993. Focus on bacterial blight of rice. Plant Dis. 77:5-12. https://doi.org/10.1094/PD-77-0005
  21. Pell, L. G., Kanelis, V., Donaldson, L. W., Howell, P. L. and Davidson, A. R. 2009. The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc. Natl. Acad. Sci. U. S. A. 106:4160-4165. https://doi.org/10.1073/pnas.0900044106
  22. Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., Heidelberg, J. F. and Mekalanos, J. J. 2006. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. U. S. A. 103:1528-1533. https://doi.org/10.1073/pnas.0510322103
  23. Rajeshwari, R., Yashitola, J., Sonti, R. V. and Reddy, A. P. K. 1997. Characteristics of stationary-phase variation affecting virulence in Xanthomonas oryzae pv. oryzae. Can. J. Microbiol. 43:862-867. https://doi.org/10.1139/m97-125
  24. Ray, S. K., Rajeshwari, R., Sharma, Y. and Sonti, R. V. 2002. A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol. Microbiol. 46:637-647. https://doi.org/10.1046/j.1365-2958.2002.03188.x
  25. Russell, A. B., Hood, R. D., Bui, N. K., LeRoux, M., Vollmer, W. and Mougous, J. D. 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343-347. https://doi.org/10.1038/nature10244
  26. Salzberg, S. L., Sommer, D. D., Schatz, M. C., Phillippy, A. M., Rabinowicz, P. D., Tsuge, S., Furutani, A., Ochiai, H., Delcher, A. L., Kelley, D., Madupu, R., Puiu, D., Radune, D., Shumway, M., Trapnell, C., Aparna, G., Jha, G., Pandey, A., Patil, P. B., Ishihara, H., Meyer, D. F., Szurek, B., Verdier, V., Koebnik, R., Dow, J. M., Ryan, R. P., Hirata, H., Tsuyumu, S., Lee S. W., Seo, Y.-S., Sriariyanum, M., Ronald, P. C., Sonti, R. V., Van Sluys, M.-A., Leach, J. E., White, F. F. and Bogdanove, A. J. 2008. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9:204. https://doi.org/10.1186/1471-2164-9-204
  27. Schafera, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69-73 . https://doi.org/10.1016/0378-1119(94)90324-7
  28. Schwarz, S., West, T. E., Boyer, F., Chiang, W.-C., Carl, M. A., Hood, R. D., Rohmer, L., Tolker-Nielsen, T., Skerrett, S. J. and Mougous, J. D. 2010. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6:e1001068. https://doi.org/10.1371/journal.ppat.1001068
  29. Shen, Y., Sharma, P., da Silva, F. G. and Ronald, P. 2002. The Xanthomonas oryzae pv. oryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5'-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol. Microbiol. 44:37-48. https://doi.org/10.1046/j.1365-2958.2002.02862.x
  30. Song, C. and Yang, B. 2010. Mutagenesis of 18 type III effectors reveals virulence function of XopZ (PXO99) in Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 23:893-902. https://doi.org/10.1094/MPMI-23-7-0893
  31. Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G. and Jones, J. D. 1995. Molecular genetics of plant disease resistance. Science 268:661-667. https://doi.org/10.1126/science.7732374
  32. Tian, F., Yu, C., Li, H., Wu, X., Li, B., Chen, H., Wu, M. and He, C. 2015. Alternative sigma factor RpoN2 is required for flagellar motility and full virulence of Xanthomonas oryzae pv. oryzae. Microbiol. Res. 170:177-183. https://doi.org/10.1016/j.micres.2014.07.002
  33. Yang, X., Long, M. and Shen, X. 2018. Effector-immunity pairs provide the T6SS nanomachine its offensive and defensive capabilities. Molecules 23:1009. https://doi.org/10.3390/molecules23051009
  34. Zhang, L., Xu, J., Xu, J., Zhang, H., He, L. and Feng, J. 2014. TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Microb. Pathog. 74:1-7. https://doi.org/10.1016/j.micpath.2014.06.006