• Title/Summary/Keyword: Gene Targeted

Search Result 396, Processing Time 0.02 seconds

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

Enzymatic bioconversion of ginseng powder increases the content of minor ginsenosides and potentiates immunostimulatory activity

  • Park, Jisang;Kim, Ju;Ko, Eun-Sil;Jeong, Jong Hoon;Park, Cheol-Oh;Seo, Jeong Hun;Jang, Yong-Suk
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.304-314
    • /
    • 2022
  • Background: Ginsenosides are biologically active components of ginseng and have various functions. In this study, we investigated the immunomodulatory activity of a ginseng product generated from ginseng powder (GP) via enzymatic bioconversion. This product, General Bio compound K-10 mg solution (GBCK10S), exhibited increased levels of minor ginsenosides, including ginsenoside-F1, compound K, and compound Y. Methods: The immunomodulatory properties of GBCK10S were confirmed using mice and a human natural killer (NK) cell line. We monitored the expression of molecules involved in immune responses via enzyme-linked immunosorbent assay, flow cytometry, NK cell-targeted cell destruction, quantitative reverse-transcription real-time polymerase chain reaction, and Western blot analyses. Results: Oral administration of GBCK10S significantly increased serum immunoglobulin M levels and primed splenocytes to express pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ. Oral administration of GBCK10S also activated NK cells in mice. Furthermore, GBCK10S treatment stimulated a human NK cell line in vitro, thereby increasing granzyme B gene expression and activating STAT5. Conclusion: GBCK10S may have potent immunostimulatory properties and can activate immune responses mediated by B cells, Th1-type T cells, and NK cells.

KIF26B-AS1 Regulates TLR4 and Activates the TLR4 Signaling Pathway to Promote Malignant Progression of Laryngeal Cancer

  • Li, Li;Han, Jiahui;Zhang, Shujia;Dong, Chunguang;Xiao, Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1344-1354
    • /
    • 2022
  • Laryngeal cancer is one of the highest incidence, most prevalently diagnosed head and neck cancers, making it critically necessary to probe effective targets for laryngeal cancer treatment. Here, real-time quantitative reverse transcription PCR (qRT-PCR) and western blot analysis were used to detect gene expression levels in laryngeal cancer cell lines. Fluorescence in situ hybridization (FISH) and subcellular fractionation assays were used to detect the subcellular location. Functional assays encompassing Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were performed to examine the effects of target genes on cell proliferation and migration in laryngeal cancer. The in vivo effects were proved by animal experiments. RNA-binding protein immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays were used to investigate the underlying regulatory mechanisms. The results showed that KIF26B antisense RNA 1 (KIF26B-AS1) propels cell proliferation and migration in laryngeal cancer and regulates the toll-like receptor 4 (TLR4) signaling pathway. KIF26B-AS1 also recruits FUS to stabilize TLR4 mRNA, consequently activating the TLR4 signaling pathway. Furthermore, KIF26B-AS1 plays an oncogenic role in laryngeal cancer via upregulating TLR4 expression as well as the FUS/TLR4 pathway axis, findings which offer novel insight for targeted therapies in the treatment of laryngeal cancer patients.

The complete mitochondrial genome of the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae)-a climate-sensitive indicator species in South Korea

  • Seung Hyun Lee;Jeong Sun Park;Jee-Young Pyo;Sung-Soo Kim;Iksoo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.46 no.2
    • /
    • pp.41-54
    • /
    • 2023
  • The blue-tailed damselfly, Ischnura elegans Van der Linden, 1820 (Odonata: Coenagrionidae), is a climate-sensitive indicator species in South Korea. In this study, we sequenced the complete mitochondrial genome (mitogenome) of I. elegans collected from South Korea for subsequent population genetic analysis, particularly to trace population movements in response to climate change. The 15,963 base pair (bp)-long complete mitogenome of I. elegans has typical sets of genes including a major non-coding region (the A+T-rich region), and an arrangement identical to that observed in ancestral insect species. The ATP6, ND3 and ND1 genes have the TTG start codon, which, although rare, is the canonical start codon for animal mitochondrial tRNA. The A/T content was 71.4% in protein-coding genes, 72.1% in tRNAs, 72.9% in the whole genome, 74.7% in srRNA, 75.3% in lrRNA, and 83.8% in the A+T-rich region. The A+T-rich region is unusually long (1,196 bp) and contains two subunits (192 bp and 176-165 bp), each of which is tandemly triplicated and surrounded by non-repeat sequences. Comparison of the sequence divergence among available mitogenomes of I. elegans, including the one from the current study, revealed ND2 as the most variable gene, followed by COII and COI, suggesting that ND2 should be targeted first in subsequent population-level studies. Phylogenetic reconstruction based on all available mitogenome sequences of Coenagrionidae showed a strong sister relationship between I. elegans and I. senegalensis.

Identification of Cell Type-Specific Effects of DNMT3A Mutations on Relapse in Acute Myeloid Leukemia

  • Seo-Gyeong Bae;Hyeoung-Joon Kim;Mi Yeon Kim;Dennis Dong Hwan Kim;So-I Shin;Jae-Sook Ahn;Jihwan Park
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.611-626
    • /
    • 2023
  • Acute myeloid leukemia (AML) is a heterogeneous disease caused by distinctive mutations in individual patients; therefore, each patient may display different cell-type compositions. Although most patients with AML achieve complete remission (CR) through intensive chemotherapy, the likelihood of relapse remains high. Several studies have attempted to characterize the genetic and cellular heterogeneity of AML; however, our understanding of the cellular heterogeneity of AML remains limited. In this study, we performed single-cell RNA sequencing (scRNAseq) of bone marrow-derived mononuclear cells obtained from same patients at different AML stages (diagnosis, CR, and relapse). We found that hematopoietic stem cells (HSCs) at diagnosis were abnormal compared to normal HSCs. By improving the detection of the DNMT3A R882 mutation with targeted scRNAseq, we identified that DNMT3A-mutant cells that mainly remained were granulocyte-monocyte progenitors (GMPs) or lymphoid-primed multipotential progenitors (LMPPs) from CR to relapse and that DNMT3A-mutant cells have gene signatures related to AML and leukemic cells. Copy number variation analysis at the single-cell level indicated that the cell type that possesses DNMT3A mutations is an important factor in AML relapse and that GMP and LMPP cells can affect relapse in patients with AML. This study advances our understanding of the role of DNMT3A in AML relapse and our approach can be applied to predict treatment outcomes.

LncRNA AC005332.7 Inhibited Ferroptosis to Alleviate Acute Myocardial Infarction Through Regulating miR-331-3p/CCND2 Axis

  • Rixin Dai;Xiheng Yang;Wujin He;Qiang Su;Xuexin Deng;Juanfen Li
    • Korean Circulation Journal
    • /
    • v.53 no.3
    • /
    • pp.151-167
    • /
    • 2023
  • Background and Objectives: Acute myocardial infarction (AMI) often occurs suddenly and leads to fatal consequences. Ferroptosis is closely related to the progression of AMI. However, the specific mechanism of ferroptosis in AMI remains unclear. Methods: We constructed a cell model of AMI using AC16 cells under oxygen and glucose deprivation (OGD) conditions and a mice model of AMI using the left anterior descending (LAD) ligation. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide was employed to determine cell viability. The levels of lactate dehydrogenase, creatine kinase, reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and iron were measured using corresponding kits. Dual luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull-down were performed to validate the correlations among AC005332.7, miR-331-3p, and cyclin D2 (CCND2). Hematoxylin and eosin staining was employed to evaluate myocardial damage. Results: AC005332.7 and CCND2 were lowly expressed, while miR-331-3p was highly expressed in vivo and in vitro models of AMI. AC005332.7 sufficiency reduced ROS, MDA, iron, and ACSL4 while boosting the GSH and GPX4, indicating that AC005332.7 sufficiency impeded ferroptosis to improve cardiomyocyte injury in AMI. Mechanistically, AC005332.7 interacted with miR-331-3p, and miR-331-3p targeted CCND2. Additionally, miR-331-3p overexpression or CCND2 depletion abolished the suppressive impact of AC005332.7 on ferroptosis in OGD-induced AC16 cells. Moreover, AC005332.7 overexpression suppressed ferroptosis in mice models of AMI. Conclusions: AC005332.7 suppressed ferroptosis in OGD-induced AC16 cells and LAD ligation-operated mice through modulating miR-331-3p/CCND2 axis, thereby mitigating the cardiomyocyte injury in AMI, which proposed novel targets for AMI treatment.

Analysis of the Effectiveness of Garlic on Gastrointestinal motility disorders using a network pharmacological method (네트워크 약리학 방법을 이용한 위장관 운동성 장애 관련 마늘의 효능 분석)

  • Na Ri Choi;Byung Joo Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.245-252
    • /
    • 2023
  • Objectives : The purpose of this study was to explore the compounds, targets and related diseases of garlic by the approaches of network pharmacology and bioinformatics in traditional chinese medicine. Methods : We investigated components and their target molecules of garlic using SymMap and TCMSP and they were compared with analysis platform. Results : 56 potential compounds were identified in garlic, 26 of which contained target information, and it was found that these 26 compounds and 154 targets interact with each other through a combination of 243 compounds. In addition, Apigenin was linked to the most targeted gene (78) in 26 compounds, followed by Kaempferol (61 genes), Nicotic Acid (14 genes), Geraniol (11 genes), Eee (10 genes), and Sobrol A (9 genes). Among 56 potential compounds, three compounds (Kaempferol, Dipterocarpol, and N-Methyl cytisine) corresponded to the active compound by screening criterion Absorption, Distribution, Metabolism, Excretion (ADME). In addition, 12 compounds in 56 potential compounds were associated with gastrointestinal (GI) motility disorder. Among them, Kaempferol was a compound that met the ADME parameters and the rest were potential compounds that did not meet. Also, Kaempferol was closely related to GI motility disorder, indicating that this Kaempferol could be a candidate for potential medical efficacy. Conclusions : It shows the relationship between the compound of garlic, an herbal supplement, and the biological process associated with GI motility disorder. These results are thought to help develop strategies for treating GI motility disorders.

A comparison study of pathological features and drug efficacy between Drosophila models of C9orf72 ALS/FTD

  • Davin Lee;Hae Chan Jeong;Seung Yeol Kim;Jin Yong Chung;Seok Hwan Cho;Kyoung Ah Kim;Jae Ho Cho;Byung Su Ko;In Jun Cha;Chang Geon Chung;Eun Seon Kim;Sung Bae Lee
    • Molecules and Cells
    • /
    • v.47 no.1
    • /
    • pp.100005.1-100005.15
    • /
    • 2024
  • Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a complex genetic basis, presenting both in familial and sporadic forms. The hexanucleotide (G4C2) repeat expansion in the C9orf72 gene, which triggers distinct pathogenic mechanisms, has been identified as a major contributor to familial and sporadic Amyotrophic lateral sclerosis cases. Animal models have proven pivotal in understanding these mechanisms; however, discrepancies between models due to variable transgene sequence, expression levels, and toxicity profiles complicate the translation of findings. Herein, we provide a systematic comparison of 7 publicly available Drosophila transgenes modeling the G4C2 expansion under uniform conditions, evaluating variations in their toxicity profiles. Further, we tested 3 previously characterized disease-modifying drugs in selected lines to uncover discrepancies among the tested strains. Our study not only deepens our understanding of the C9orf72 G4C2 mutations but also presents a framework for comparing constructs with minute structural differences. This work may be used to inform experimental designs to better model disease mechanisms and help guide the development of targeted interventions for neurodegenerative diseases, thus bridging the gap between model-based research and therapeutic application.

CysLT receptor-mediated NOX2 activation is required for IL-8 production in HMC-1 cells induced by Trichomonas vaginalis-derived secretory products

  • Young Ah Lee;Myeong Heon Shin
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.3
    • /
    • pp.270-280
    • /
    • 2024
  • Trichomoniasis is caused by a sexually transmitted flagellate protozoan parasite Trichomonas vaginalis. T. vaginalis-derived secretory products (TvSP) contain lipid mediators such as leukotriene B4 (LTB4) and various cysteinyl leukotrienes (CysLTs) which included LTC4, LTD4, and LTE4. However, the signaling mechanisms by which T. vaginalis-induced CysLTs stimulate interleukin (IL)-8 production in human mast cells remain unclear. In this study, we investigated these mechanisms in human mast cells (HMC-1). Stimulation with TvSP resulted in increased intracellular reactive oxygen species (ROS) generation and NADPH oxidase 2 (NOX2) activation compared to unstimulated cells. Pre-treatment with NOX2 inhibitors such as diphenyleneiodonium chloride (DPI) or apocynin significantly reduced ROS production in TvSP-stimulated HMC-1 cells. Additionally, TvSP stimulation increased NOX2 protein expression and the translocation of p47phox from the cytosol to the membrane. Pretreatment of HMC-1 cells with PI3K or PKC inhibitors reduced TvSP-induced p47phox translocation and ROS generation. Furthermore, NOX2 inhibitors or NOX2 siRNA prevented CREB phosphorylation and IL-8 gene expression or protein secretion induced by TvSP. Pretreatment with a CysLTR antagonist significantly inhibited TvSP-induced ROS production, CREB phosphorylation, and IL-8 production. These results indicate that CysLT-mediated activation of NOX2 plays a crucial role in ROS-dependent IL-8 production in human mast cells stimulated by T. vaginalis-secreted CysLTs. These findings enhance our understanding of the inflammatory response in trichomoniasis and may inform the development of targeted therapies to mitigate this response.

Novel Insights into Cr(VI)-Induced Rhamnolipid Production and Gene Expression in Pseudomonas aeruginosa RW9 for Potential Bioremediation

  • Fatini Mat Arisah;Norhayati Ramli;Hidayah Ariffin;Toshinari Maeda;Mohammed Abdillah Ahmad Farid;Mohd Zulkhairi Mohd Yusoff
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1877-1889
    • /
    • 2024
  • Rhamnolipid (RL) is renowned for its efficacy in bioremediating several types of organic and metal contaminants. Nevertheless, there has been a scarcity of studies specifically examining the relationship between this substance and metals, especially in terms of their impact on RL formation and the underlying interaction processes. This study addresses this gap by investigating the RL mechanism in Cr (VI) remediation and evaluating its effect on RL production in Pseudomonas aeruginosa RW9. In this study, P. aeruginosa RW9 was grown in the presence of 10 mg l-1 Cr (VI). We monitored RL yield, congeners distribution, and their ratios, as well as the transcriptional expression of the RL-encoded genes: rhlA, rhlB, and rhlC. Our results revealed that RL effectively reduced Cr (VI) to Cr (III), with RL yield increasing threefold, although with a slight delay in synthesis compared to control cells. Furthermore, Cr (VI) exposure induced the transcriptional expression of the targeted genes, leading to a significant increase in di-RL production. The findings confirm that Cr (VI) significantly impacts RL production, altering its structural compositions and enhancing the transcriptional expression of RL-encoded genes in P. aeruginosa RW9. This study represents a novel exploration of Cr (VI)'s influence on RL production, providing valuable insights into the biochemical pathways involved and supporting the potential of RL in Cr (VI) bioremediation.