• Title/Summary/Keyword: Gene Regulation

Search Result 2,196, Processing Time 0.03 seconds

Hepatoprotective effect of Samchulgeonbi-tang via Nrf2 Activation (Nrf2활성화를 통한 삼출건비탕(蔘朮健脾湯)의 간세포보호효과)

  • Ye Lim Kim;Hyo Jeong Jin;Sang Mi Park;Sung Hui Byun;Chang Hyun Song;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.2
    • /
    • pp.111-124
    • /
    • 2023
  • Objectives : Oxidative stress is an important cause of many diseases including liver injury. Therefore, adequate regulation of oxidative stress plays a pivotal role in maintaining liver function. Until recently, there has been no studies on the hepatoprotective effect of Samchulgeonbi-tang (SCGBT). Therefore, the hepatoprotective effect of SCGBT was investigated in HepG2 cells. In this study, oxidative stress was induced by arachidonic acid (AA) and iron. Methods : To analyze the hepatoprotective effects of SCGBT against oxidative stress induced by AA + iron, the cell viability, apoptosis-related proteins and intracellular ROS, glutathione (GSH), and mitochondrial membrane permeability (MMP) were measured. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) transcription activation and expressions of Nrf2 target gene were analyzed through immunoblot analysis. Results : SCGBT increased the cell viability from AA + iron - induced cell death and inhibited apoptosis by regulating apoptosis related proteins. SCGBT protected cells by inhibiting ROS production, GSH depletion, and MMP degradation against AA + iron induced oxidative stress. Furthermore, Nrf2 activation was increased by SCGBT, and the Nrf2 target genes were also activated by SCGBT. Conclusions : These results suggest that the SCGBT has a hepatocyte protection effect and antioxidant effect from AA + iron induced oxidative stress.

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You;Siyuan Song;Deren Liu;Tongsen Ren;Song Jiang Yin;Peng Wu;Jun Mao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis

  • Seon Ha Jo;Kyeong Ah Jo;Soo-yeon Park;Ji Yeon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.880-890
    • /
    • 2024
  • The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.

Anti-inflammatory effect of beluga lentil extract in RAW 264.7 macrophages (RAW 264.7 대식세포에서 벨루가 렌틸 추출물의 항염증 효과)

  • Hyeon-Ji Song;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.462-473
    • /
    • 2024
  • The anti-inflammatory effect of beluga lentil extract (BLE) and its underlying mechanisms were investigated in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Treatment with BLE significantly decreased nitric oxide (NO) production and protein and mRNA expressions of inducible NO synthase (iNOS) in LPS-treated RAW 264.7 cells. Down-regulation of this inflammatory gene expression was not associated with NF-κB/MAPK signaling pathways, and further mechanistic studies demonstrated that BLE decreased LPS-induced iNOS expression through upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase-1 (HO-1) expression. These results suggest that beluga lentil represent a potential source of natural anti-inflammatory agents, and further studies will be necessary to determine its anti-inflammatory effects in vivo.

Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng

  • Jeoungeui Hong;Soeun Han;Kyoung Rok Geem;Wonsil Bae;Jiyong Kim;Moo-Geun Jee;Jung-Woo Lee;Jang-Uk Kim;Gisuk Lee;Youngsung Joo;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.511-519
    • /
    • 2024
  • Background: The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of Panax ginseng, the molecular aspects of bud dormancy in this species remain largely unknown. Methods: In this study, the molecular physiological responses of three P. ginseng cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy. Results: Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (PYRs/PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs), and DELLAs were highly correlated with different dormancy states in three P. ginseng cultivars. Conclusion: This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant P. ginseng.

Effects of Platycodin D on Gene Expressions of Pro-adipogenic and Anti-adipogenic Regulators in 3T3-L1 Cells (3T3-L1 세포에서 지방세포형성 유도조절자 및 억제조절자의 발현에 대한 platycodin D의 효과)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Cho, Soo-Hyun;Kim, Sung-Su;Kim, Yeong-Shik;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1802-1807
    • /
    • 2009
  • Platycodin D, a major component of Platycodi radix, is known to have various activities including anti-inflammatory, anti-hyperlipidemic, anti-tumor activities and others. Recently, it was reported that platycodin D inhibits fat accumulation and adipogenesis. The aim of this study was to investigate whether various adipogenic regulators are modulated by platycodin D treatment during the adipogenesis of 3T3-L1 cells. mRNA levels of terminal markers of adipogenesis such as ADIPOQ (adiponectin) and GLUT (glucose transporter) 4, which were quantified by real time PCR, were decreased by platycodin D treatment. mRNA expression of PPAR (peroxisome proliferator-activated receptor) $\gamma$ and C/EBP (CCAAT/enhaner binding protein) $\alpha$, which are central transcription factors of adipogenesis, were also decreased by platycodin D treatment. To elucidate the detailed molecular mechanism of platycodin D-induced inhibition of adipogenesis, we analyzed mRNA expression of upstream regulators of PPAR$\gamma$ and C/EPB$\alpha$. mRNA levels of the pro-adipogenic regulators, KROX20 and KLF (Kruppel-like factor) 15 were markedly down-regulated by platycodin D treatment. On the other hand, mRNA expression of CHOP (C/EBP homologous protein), an anti-adipogenic regulator, was significantly up-regulated by platycodin D treatment. mRNA levels of other pro-adipogenic regulators, C/EBP$\beta$ and C/EPB$\delta$, were not affected by platycodin D treatment, and another anti-adipogenic regulator, C/EBP$\gamma$ was also not affected by platycodin D treatment. Taken together, these results suggest that platycodin D-induced inhibition of adipogenesis is mediated by gene interactions including the down-regulation of pro-adipogenic regulators, KROX20 and KLF15, and the up-regulation of an anti-adipogenic regulator, CHOP.

Effects of Immunostimulatory CpG-Oligodeoxynucleotides on Bronchial Asthma in Rat (백서 천식에서 면역 증강성 CpG 올리고 뉴클레오티드 투여의 효과)

  • Lee, Sin-Hyung;Kim, Je-Hyeong;Jeong, Hye-Cheol;Kim, Kyung-Kyu;Jung, Ki-Hwan;Kim, Byung-Gyu;Lee, Seung-Heon;Park, Sang-Myun;Sin, Cheol;Cho, Jae-Youn;Shim, Jae-Jeong;In, Kwang-Ho;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.12-28
    • /
    • 2001
  • Background and Object : Immunostimulatory CpG-oligodeoxynucleotides (ISS CpG-ODN) up-regulate the $T_{H1}$-type immune response and down-regulate the $T_{H2}$-type response. This study was performed to investigate the immune response changes resulting from ISS CpG-ODN on bronchial hyperresponsiveness, eosinophilic inflammation and mucus hypersecretion in rat asthma. Materials and Methods : 10 normal controls(NC) and 26 asthmatic rats, which were generated by ovalbumin(OVA) sensitization and challenge, were studied. The asthmatic rats were randomized into 11 asthma controls(AC) and 15 in the asthma-CpG treatment group(CpG). The CpG group was administered ISS CpG-ODN intramuscularly and the AC group was administered a placebo(0.9% NaCl) on day 15 and 20. After CpG-ODN or placebo administration, we measured the IFN-${\gamma}$($T_{H1}$-type cytokine) and IL-4($T_{H2}$-type cytokine) levels in the bronchoalveolar lavage fluid(BALF), the specific airway resistance(sRaw), eosinophilic fraction in BALF, eosinophilic infiltration, goblet cell dysplasia and MUC5AC gene expression in the lung tissue. Results : In the BALF of the CpG group, the IFN-${\gamma}$ concentration was significantly high and the IL-4 concentration was significantly low when compared with the AC group. Both the sRaw and eosinophilic fraction, and infiltration into the BALF and lung tissue significantly lower in the CpG group when compared with the AC group. However, little difference in goblet cell dysplasia and MUC5AC gene expression was observed between the CpG group and the AC group. Conclusion : ISS CpG-ODN decreases bronchial hyperresponsiveness and eosinophilic inflammation in the rat asthma model through the up-regulation of the $T_{H1}$-type immune response with the down-regulation of the $T_{H2}$-type response. However, the effect of these immune response changes on mucus hypersecretion was is not remarkable in this study.

  • PDF

The Effect of Endotoxin on Gene Expression and Total Amount of Surfactant Protein A (내독소가 Surfactant Protein A의 유전자 발현과 총단백량에 미치는 영향에 관한 실험적 연구)

  • Moon, Doo-Seop;Sohn, Jang-Won;Yang, Seok-Chul;Yoon, Ho-Joo;Shin, Dong-Ho;Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.703-714
    • /
    • 2000
  • Background : Surfactant protein A (SP-A) is important in the regulation of surfactant secretion, synthesis and recycling. SP-A has important roles in regulating surfactant metabolism as well as in determining surfactant's physical properties. Since systemic sepsis is one of the common causes of acute respiratory distress syndrome (ARDS) and abnormalities in surfactant function have been described in ARDS, the authors investigated the effects of endotoxemia on the accumulation of mRNA encoding SP-A and SP-A protein content. Methods : Adult rats were given various doses of intraperitoneal endotoxin from Salmonella enteritidis and sacrificed at different times. SP-A mRNA was measured by filter hybridization method. Lung SP-A protein content was determined by double sandwich ELISA assay using a polyclonal antiserum raised in rabbits against purified rat SP-A. Results : 1) The accumulation of SP-A mRNA in the endotoxin treated group 24 hours after 2mg/kg and 5mg/kg endotoxin treatments was significantly increased 50.9% and 27.3%, respectively, compared to the control group (P<0.001, P<0.025). 2) The accumulation of SP-A mRNA 24 hours in the 5mg/kg endotoxin treated group was significantly increased by 26.5% compared to the control group (P<0.01). 3) Total amount of lung SP-A was not altered at 24 hours by various doses of treatment. Total lung SP-A content 144 hours after endotoxin administration was significantly decreased by 51.4% compared to the control group (P<0.01). Conclusions : The specific regulation of SP-A by various time course in vivo is evident. The late decline in SP-A protein content was unexpected and suggests that SP-A may be differentially regulated during lung inflammation. The functional significance of these alterations remains to be clarified.

  • PDF

Gene Expression of Surfactant Protein A mRNA of the Lung in Endotoxin and Thiourea Treated Rats (폐장에서 내독소 및 Thiourea 투여 후 Surfactant Protein A mRNA발현의 비교)

  • Lee, Jae Young;Kim, Mi Ok;Sohn, Jang Won;Yoon, Ho Joo;Shin, Dong Ho;Kim, Tae Wha;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.3
    • /
    • pp.257-266
    • /
    • 2003
  • Background : The surfactant protein A(SP-A) is important in the regulation of surfactant secretion, synthesis and recycling. Since the acute respiratory distress syndrome(ARDS) is usually viewed as the functional and morphological expression of a similar underlying lung injury casued by a variety of insults and since abnormalities in surfactant function have been described in ARDS, the authors investigated the different effects of endotoxin and thiourea on the accumulation of mRNA encoding SP-A. Methods : Sprague-Dawley rats were given 5 mg/kg intraperitoneal endotoxin from Salmonella enteritidis and 3.5 mg/kg intraperitoneal thiourea and sacrified at different time periods. Results : 1) SP-A mRNA was significantly increased 67.0% in 6 hours and 73.4% in 24 hours after 5 mg/kg endotoxin treatment respectively(P<0.005, P<0.005). 2) SP-A mRNA significantly decreased 32.9% in 24 hours after 3.5 mg/kg thiourea treatment(P<0.05). Conclusions : These results indicate that the differential regulation of surfactant protein A in vivo is evident and suggest that surfactant protein A might be differentially regulated during different kind of insults of lung injury at different time periods without altering lung wet to dry ratios.

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition (생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1054-1065
    • /
    • 2010
  • SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.