DOI QR코드

DOI QR Code

Hepatoprotective effect of Samchulgeonbi-tang via Nrf2 Activation

Nrf2활성화를 통한 삼출건비탕(蔘朮健脾湯)의 간세포보호효과

  • Ye Lim Kim (College of Korean Medicine, Daegu Haany University) ;
  • Hyo Jeong Jin (College of Korean Medicine, Daegu Haany University) ;
  • Sang Mi Park (College of Korean Medicine, Daegu Haany University) ;
  • Sung Hui Byun (College of Korean Medicine, Daegu Haany University) ;
  • Chang Hyun Song (College of Korean Medicine, Daegu Haany University) ;
  • Sang Chan Kim (College of Korean Medicine, Daegu Haany University)
  • 김예림 (대구한의대학교 한의과대학) ;
  • 진효정 (대구한의대학교 한의과대학) ;
  • 박상미 (대구한의대학교 한의과대학) ;
  • 변성희 (대구한의대학교 한의과대학) ;
  • 송창현 (대구한의대학교 한의과대학) ;
  • 김상찬 (대구한의대학교 한의과대학)
  • Received : 2023.05.12
  • Accepted : 2023.05.22
  • Published : 2023.05.31

Abstract

Objectives : Oxidative stress is an important cause of many diseases including liver injury. Therefore, adequate regulation of oxidative stress plays a pivotal role in maintaining liver function. Until recently, there has been no studies on the hepatoprotective effect of Samchulgeonbi-tang (SCGBT). Therefore, the hepatoprotective effect of SCGBT was investigated in HepG2 cells. In this study, oxidative stress was induced by arachidonic acid (AA) and iron. Methods : To analyze the hepatoprotective effects of SCGBT against oxidative stress induced by AA + iron, the cell viability, apoptosis-related proteins and intracellular ROS, glutathione (GSH), and mitochondrial membrane permeability (MMP) were measured. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) transcription activation and expressions of Nrf2 target gene were analyzed through immunoblot analysis. Results : SCGBT increased the cell viability from AA + iron - induced cell death and inhibited apoptosis by regulating apoptosis related proteins. SCGBT protected cells by inhibiting ROS production, GSH depletion, and MMP degradation against AA + iron induced oxidative stress. Furthermore, Nrf2 activation was increased by SCGBT, and the Nrf2 target genes were also activated by SCGBT. Conclusions : These results suggest that the SCGBT has a hepatocyte protection effect and antioxidant effect from AA + iron induced oxidative stress.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea funded by Korea government (MSIP) (Grant No.2018R1A5A2025272)

References

  1. Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18(1):45-56. https://doi.org/10.1038/s41423-020-00558-8
  2. Son JW, Jung JY, Kim KY, Hwangbo M, Park CA, Cho IJ, Back YD, Jung TY, Kim SC, and Jee SY. The Protective Activity of Soeumin Bojungykgi-tang Water Extract Against Oxidative Stress-induced Hepato-Toxicity. Herbal Formula Science. 2017;25(4):509-26. https://doi.org/10.14374/HFS.2017.25.4.509
  3. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21):R1147-51. https://doi.org/10.1016/j.cub.2017.09.019
  4. Cheng ML, Nakib D, Perciani CT, MacParland SA. The immune niche of the liver. Clin Sci (Lond). 2021;135(20):2445-66. https://doi.org/10.1042/CS20190654
  5. Lee G, Kim J, Kang H, Bae D, Choi CY. Antioxidant Activities and Hepato-protective Effects of Stauntonia hexaphylla Fruit Extract Against H2O2-induced Oxidative Stress and Acetaminophen-induced Toxicity. Journal of Life Science. 2018;28(6):708-17. https://doi.org/10.5352/JLS.2018.28.6.708
  6. Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116-41. https://doi.org/10.1016/j.freeradbiomed.2020.02.025
  7. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med. 2021;171(2):179-89. https://doi.org/10.1007/s10517-021-05191-7
  8. Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett. 2018;413:122-34. https://doi.org/10.1016/j.canlet.2017.11.002
  9. Chen Z, Zhong C. Oxidative stress in Alzheimer's disease. Neurosci Bull. 2014;30(2):271-281. https://doi.org/10.1007/s12264-013-1423-y
  10. Cichoz-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082-91. https://doi.org/10.3748/wjg.v20.i25.8082
  11. Uchida D, Takaki A, Oyama A, Adachi T, Wada N, Onishi H, Okada H. Oxidative Stress Management in Chronic Liver Diseases and Hepatocellular Carcinoma. Nutrients. 2020;12(6):1576.
  12. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20(39):14205-18. https://doi.org/10.3748/wjg.v20.i39.14205
  13. Kim HJ, Cho SY, Kim JB, Kim HW, Choe JS, Jang HH. Effects of the Cedrela sinensis A. Juss. leaves on the alcohol-induced oxidative stress in the human hepatic HepG2 cells. The Korean Journal of Food And Nutrition. 2018:31(4):464-70.
  14. Huh J. Donguibogam. Seoul:Namsandang. 1983:431.
  15. Herbal Formula Textbook Compilation Committee. Herbal Formula Science in Korean Medicine (Special). Paju:Koonja Publisher. 2023:464, 745-747, 1311.
  16. Lee SY, Kim JH. Effects of Samchulkunbitang on the Immunosuppression Induced by Methotrexate in Rats. J Pediatr Korean Med. 1998:12(1):257-76.
  17. Kim TG, Ko SG, Baik TH. An experimental study on the effect of Samchulgunbitang affecting gastro-intestine and central nervous system. The Journal of Internal Korean Medicine, 1997:18(1): 1-14.
  18. Han YG, Lee MJ. The effects of Sam-choolgun-bi-tang administration on urine metabolic responses during carbohydrate loading diet to long distance runners. The Journal of Dong Guk Oriental Medicine. 2000;8(2):83-96.
  19. Park SM, Kim JK, Kim EO, Jegal KH, Jung DH, Lee SG, Cho IJ, Kim S, Byun SH, Ku SK, Park CA, Lee CW, An WG, Kim SC, Zhao R. Hepatoprotective Effect of Pericarpium zanthoxyli Extract Is Mediated via Antagonism of Oxidative Stress. Evid Based Complement Alternat Med. 2020;2020:6761842.
  20. Jung EH, Lee JH, Kim SC, Kim YW. AMPK activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid X receptor. Eur J Nutr. 2017;56(2):635-47. https://doi.org/10.1007/s00394-015-1107-7
  21. Jung JY, Lee CW, Park SM, Jegal KH, Kim JK, Park CA, Cho IJ, Jung DH, An WG, Ku SK, Zhao R, Kim SC. Activation of AMPK by Buddleja officinalis Maxim. Flower Extract Contributes to Protecting Hepatocytes from Oxidative Stress. Evid Based Complement Alternat Med. 2017;2017:9253462.
  22. Jegal KH, Ko HL, Park SM, Byun SH, Kang KW, Cho IJ, Kim SC. Eupatilin induces Sestrin2-dependent autophagy to prevent oxidative stress. Apoptosis. 2016;21(5):642-56. https://doi.org/10.1007/s10495-016-1233-6
  23. Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep. 2008;41(1):11-22. https://doi.org/10.5483/BMBRep.2008.41.1.011
  24. Park SM, Kim SW, Jung EH, Ko HL, Im CK, Lee JR, Byun SH, Ku SK, Kim SC, Park CA, Kim KJ, Cho IJ. Sipjeondaebo-tang Alleviates Oxidative Stress-Mediated Liver Injury through Activation of the CaMKK2-AMPK Signaling Pathway. Evid Based Complement Alternat Med. 2018;2018:8609285.
  25. Kim YW, Lee SM, Shin SM, Hwang SJ, Brooks JS, Kang HE, Lee MG, Kim SC, Kim SG. Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury. Free Radic Biol Med. 2009;47(7):1082-92. https://doi.org/10.1016/j.freeradbiomed.2009.07.018
  26. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M, Misso G. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2020;98:139-53. https://doi.org/10.1016/j.semcdb.2019.05.022
  27. Dong GZ, Jang EJ, Kang SH, Cho IJ, Park SD, Kim SC, Kim YW. Red ginseng abrogates oxidative stress via mitochondria protection mediated by LKB1-AMPK pathway. BMC Complement Altern Med. 2013;13:64.
  28. Ko HL, Jung EH, Jung DH, Kim JK, Ku SK, Kim YW, Kim SC, Zhao R, Lee CW, Cho IJ. Paeonia japonica root extract protects hepatocytes against oxidative stress through inhibition of AMPK-mediated GSK3β. Journal of Functional Foods. 2016;20:303-16. https://doi.org/10.1016/j.jff.2015.11.006
  29. Kim JK, Park SM, Jegal KH, Kim YW, Byun SH, Kim SC, Cho IJ. Gleditsia Spina Extract Protects Hepatocytes from Oxidative Stress through Nrf2 Activation. The Korea Journal of Herbology. 2015; 30(4):57-64. https://doi.org/10.6116/KJH.2015.30.4.57.
  30. Peng HR. Dictionary of Traditional Chinese Medicine Prescriptions (Vol. 6). Beijing:Renminweisheng publisher. 1994:905
  31. Jiang HT. Bihuayijing (translated by Liu BG and Shin MR). Seoul:Jeongdam publisher. 1996:79.
  32. Shen JA. Zabingyuanliuxizhu. Beijing:Zhongguozhonhyiyao publisher. 1996:237.
  33. Hwang DY. Bangyakhappyeon. Seoul:Namsandang. 1985:141-142.
  34. Peng HR. Dictionary of Traditional Chinese Medicine Prescriptions (Vol. 7). Beijing:Renminweisheng publisher. 1994:416.
  35. Peng HR. Dictionary of Traditional Chinese Medicine Prescriptions (Vol. 1). Beijing:Renminweisheng publisher. 1994:532.
  36. Lee SI. Herbilogy. Seoul:Suseowon. 1981:104, 394.
  37. Farzanegi P, Dana A, Ebrahimpoor Z, Asadi M, Azarbayjani MA. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur J Sport Sci. 2019;19(7):994-1003. https://doi.org/10.1080/17461391.2019.1571114
  38. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689-709. https://doi.org/10.1038/s41573-021-00233-1
  39. Han JH, Choi YE. Metabolic Syndrome and Oxidative Stress, Antioxidants. Journal of the Korean Academy of Family Medicine. 2006;27(10):773-81.
  40. Cederbaum AI, Wu D, Mari M, Bai J. CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radical Biology and Medicine. 2001;31(12):1539-43. https://doi.org/10.1016/S0891-5849(01)00743-2
  41. Sztolsztener K, Chabowski A, Harasim-Symbor E, Bielawiec P, Konstantynowicz-Nowicka K. Arachidonic acid as an early indicator of inflammation during non-alcoholic fatty liver disease development. Biomolecules. 2020;10(8):1133.
  42. Bao Y, Shen Y, Wu Z, Tao S, Yang B, Zhu T, Jin M. High dietary arachidonic acid produces excess eicosanoids, and induces hepatic inflammatory responses, oxidative stress and apoptosis in juvenile Acanthopagrus schlegelii. Aquaculture Reports. 2023;29:101506.
  43. Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. International journal of molecular sciences. 2018;19(11):3285.
  44. Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion. 2013;13(3):209-24. https://doi.org/10.1016/j.mito.2012.10.003
  45. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106-21. https://doi.org/10.1038/s41423-020-00630-3
  46. D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582-92. https://doi.org/10.1002/cbin.11137
  47. Kim KB, Kim YA, Park JJ. Effects of 8-week Exercise on Bcl-2, Bax, Caspase-8, Caspase-3 and HSP70 in Mouse Gastrocnemius Muscle. Journal of Life Science. 2010;20(9):1409-14. https://doi.org/10.5352/JLS.2010.20.9.1409
  48. Tsuchiya K. Inflammasome-associated cell death: Pyroptosis, apoptosis, and physiological implications. Microbiol Immunol. 2020;64(4):252-69. https://doi.org/10.1111/1348-0421.12771
  49. Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017;24(8):1380-89. https://doi.org/10.1038/cdd.2017.44
  50. Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH, Pusparajah P, Lee LH, Goh BH. Formononetin: A Review of Its Anticancer Potentials and Mechanisms. Front Pharmacol. 2019;10:820.
  51. Ahmed K, Zaidi SF, Mati-Ur-Rehman, Rehman R, Kondo T. Hyperthermia and protein homeostasis: Cytoprotection and cell death. J Therm Biol. 2020;91:102615.
  52. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-50. https://doi.org/10.1152/physrev.00026.2013
  53. Shen Y, Huang H, Wang Y, Yang R, Ke X. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol. 2022;74:127048.
  54. Liu T, Sun L, Zhang Y, Wang Y, Zheng J. Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol. 2022;36(1):e22942.
  55. Lee JH, Baek SY, Jang EJ, Ku SK, Kim KM, Ki SH, Kim YW. Oxyresveratrol ameliorates nonalcoholic fatty liver disease by regulating hepatic lipogenesis and fatty acid oxidation through liver kinase B1 and AMP-activated protein kinase. Chemico-Biological Interactions. 2018;289:68-74. https://doi.org/10.1016/j.cbi.2018.04.023
  56. Jung EH, Lee JH, Kim SC, Kim YW. AMPK activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid X receptor. European journal of nutrition. 2017;56:635-47. https://doi.org/10.1007/s00394-015-1107-7
  57. Baird L, Yamamoto M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol Cell Biol. 2020;40(13):e00099-20.
  58. Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 2022;291:120111.
  59. Oliveira RP, Machado IF, Palmeira CM, Rolo AP. The potential role of sestrin 2 in liver regeneration. Free Radic Biol Med. 2021;163:255-67. https://doi.org/10.1016/j.freeradbiomed.2020.12.027
  60. Shin SM, Yang JH, Ki SH. Role of the Nrf2-ARE pathway in liver diseases. Oxidative medicine and cellular longevity. 2013;2013:763257.
  61. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221-47. https://doi.org/10.1007/s00018-016-2223-0