• Title/Summary/Keyword: Gene Medicine

Search Result 6,086, Processing Time 0.035 seconds

Monitoring Gene Therapy by Radionuclide Approaches (핵의학적 기법을 이용한 유전자 치료 영상법)

  • Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.96-105
    • /
    • 2006
  • Molecular imaging has its root in nuclear medicine and gene therapy monitoring. Therefore, recent progress in the development of non-invasive imaging technologies, particularly nuclear medicine, should allow molecular imaging to play a major role in the field of gene therapy. These tools have recently been validated in gene therapy models for continuous quantitative monitoring of the location, magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide imaging technologies as they have been used in imaging gene delivery and gene expression for gene therapy applications. The studios published to date lend support that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human gene therapy.

Therapeutic applications of gene editing in chronic liver diseases: an update

  • Shin, Ji Hyun;Lee, Jinho;Jung, Yun Kyung;Kim, Kyeong Sik;Jeong, Jaemin;Choi, Dongho
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.251-258
    • /
    • 2022
  • Innovative genome editing techniques developed in recent decades have revolutionized the biomedical research field. Liver is the most favored target organ for genome editing owing to its ability to regenerate. The regenerative capacity of the liver enables ex vivo gene editing in which the mutated gene in hepatocytes isolated from the animal model of genetic disease is repaired. The edited hepatocytes are injected back into the animal to mitigate the disease. Furthermore, the liver is considered as the easiest target organ for gene editing as it absorbs almost all foreign molecules. The mRNA vaccines, which have been developed to manage the COVID-19 pandemic, have provided a novel gene editing strategy using Cas mRNA. A single injection of gene editing components with Cas mRNA is reported to be efficient in the treatment of patients with genetic liver diseases. In this review, we first discuss previously reported gene editing tools and cases managed using them, as well as liver diseases caused by genetic mutations. Next, we summarize the recent successes of ex vivo and in vivo gene editing approaches in ameliorating liver diseases in animals and humans.

Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke

  • Xing, Yong-Hua;Zhang, Jun-Ling;Lu, Lu;Li, De-Guan;Wang, Yue-Ying;Huang, Song;Li, Cheng-Cheng;Zhang, Zhu-Bo;Li, Jian-Guo;Xu, Guo-Shun;Meng, Ai-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4251-4256
    • /
    • 2015
  • Background: Exposure to cigarette may affect human health and increase risk of a wide range of diseases including pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, lung fibrosis and lung cancer. However, the molecular mechanisms of pathogenesis induced by cigarettes still remain obscure even with extensive studies. With systemic view, we attempted to identify the specific gene modules that might relate to injury caused by cigarette smoke and identify hub genes for potential therapeutic targets or biomarkers from specific gene modules. Materials and Methods: The dataset GSE18344 was downloaded from the Gene Expression Omnibus (GEO) and divided into mouse cigarette smoke exposure and control groups. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network for each group and detected specific gene modules of cigarette smoke exposure by comparison. Results: A total of ten specific gene modules were identified only in the cigarette smoke exposure group but not in the control group. Seven hub genes were identified as well, including Fip1l1, Anp32a, Acsl4, Evl, Sdc1, Arap3 and Cd52. Conclusions: Specific gene modules may provide better understanding of molecular mechanisms, and hub genes are potential candidates of therapeutic targets that may possible improve development of novel treatment approaches.

Tumor targeted gene therapy (종양 표적 유전자 치료)

  • Kang, Joo-Hyun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.237-242
    • /
    • 2006
  • Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment has led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest In suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner.

Effects of Gamijinhae-tang and Socheongryong-tang-ga-seokgo on PMA- induced Production of Airway Mucin and Expression of Airway MUC5AC Gene (가미진해탕(加味鎭咳湯)과 소청룡탕가석고(小靑龍湯加石膏)가 PMA로 유발된 기도뮤신의 생성 및 MUC5AC gene 발현에 미치는 영향)

  • Byun, Jun-Seop;Park, Yang-Chun;Yang, Su-Young;An, Joung-Jo;Park, So-Ae
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.765-777
    • /
    • 2008
  • Objectives : In this study, the author tried to examine whether Gamijinhae-tang and Socheongryong-tang-ga-seokgo significantly affect both PMA-induced mucin production and MUC5AC gene expression from airway epithelial cells. Materials and Methods : Confluent NCI-H292 cells were pretreated for 30 min in the presence of JHT and STS and treated with PMA (10ng/ml), to assess the effects of the agents on PMA-induced mucin production by enzyme-linked immunosorbent assay (ELISA). Also, the effects of the agents on PMA-induced MUC5AC gene expression from the same cells were investigated. Possible cytotoxicities of the agent were assessed by examining the rate of survival and proliferation of NCI-H292 cells after treatment of agents during 48 hrs. Results : (1) JHT and STS did not show significant cytotoxicity to NCI-H292 cells. (2) JHT significantly decreased PMA-induced mucin production from NCI-H292 cells. However. STS did not affect mucin production. (3) JHT significantly inhibit the expression levels of PMA-induced MUC5AC gene in NCI-H292 cells. STS slightly decreased the expression levels of PMA-induced MUC5AC gene. Conclusion : These results suggest that JHT can not only affect the production of mucin but also affect the expression of the mucin gene, and this explains the traditional use of JHT in oriental medicine. The effects of JHT and STS with their components should be further investigated using animal experimental models that simulate pathophysiology of airway diseases through future studies.

  • PDF

Gene-Diet Interaction on Cancer Risk in Epidemiological Studies

  • Lee, Sang-Ah
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.360-370
    • /
    • 2009
  • Genetic factors clearly play a role in carcinogenesis, but migrant studies provide unequivocal evidence that environmental factors are critical in defining cancer risk. Therefore, one may expect that the lower availability of substrate for biochemical reactions leads to more genetic changes in enzyme function; for example, most studies have indicated the variant MTHFR genotype 677TT is related to biomarkers, such as homocysteine concentrations or global DNA methylation particularly in a low folate diet. The modification of a phenotype related to a genotype, particularly by dietary habits, could support the notion that some of inconsistencies in findings from molecular epidemiologic studies could be due to differences in the populations studied and unaccounted underlying characteristics mediating the relationship between genetic polymorphisms and the actual phenotypes. Given the evidence that diet can modify cancer risk, gene-diet interactions in cancer etiology would be anticipated. However, much of the evidence in this area comes from observational epidemiology, which limits the causal inference. Thus, the investigation of these interactions is essential to gain a full understanding of the impact of genetic variation on health outcomes. This report reviews current approaches to gene-diet interactions in epidemiological studies. Characteristics of gene and dietary factors are divided into four categories: one carbon metabolism-related gene polymorphisms and dietary factors including folate, vitamin B group and methionines; oxidative stress-related gene polymorphisms and antioxidant nutrients including vegetable and fruit intake; carcinogen-metabolizing gene polymorphisms and meat intake including heterocyclic amins and polycyclic aromatic hydrocarbon; and other gene-diet interactive effect on cancer.

Effect of Korean Red Ginseng through comparative analysis of cardiac gene expression in db/db mice

  • Jang, Young-Jin;Aravinthan, Adithan;Hossain, Mohammad Amjad;Kopalli, Spandana Rajendra;Kim, Bumseok;Kim, Nam Soo;Kang, Chang-Won;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.450-455
    • /
    • 2021
  • Korean Red Ginseng (KRG) is an herbal oriental medicine known to alleviate cardiovascular dysfunction. To analysis the expression of diabetic cardiac complication-associated genes in db/db mice, we studied the cardiac gene expression following KRG treatment. In result, a total of 585 genes were found to be changed in db/db mice. Among the changed expression, 245 genes were found to 2-fold upregulated, and 340 genes were 2-fold downregulated. In addition, the changed gene expressions were ameliorated by KRG. In conclusion, KRG may be possible to normalize cardiac gene expressions in db/db mice.

Identification and Expression Analysis of Chloroplast p-psbB Gene Differentially Expressed in Wild Ginseng

  • Kim, Doo-Young;Kwon, Ki-Rok;Kang, Won-Mo;Jeon, Eun-Yi;Jang, Jun-Hyeog
    • Journal of Pharmacopuncture
    • /
    • v.15 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • Panax ginseng is a well-known herbal medicine in traditional Asian medicine. Although wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention, little has actually been reported on the difference between wild ginseng and cultivated ginseng. Using suppressive subtraction hybridization, we cloned the p-psbB gene as a candidate target gene for a wild ginseng-specific gene. Here, we report that one of the clones isolated in this screen was the chloroplast p-psbB gene, a chlorophyll a-binding inner antenna protein in the photosystem II complex, located in the lipid matrix of the thylakoid membrane. Real-time results showed that the expression of the p-psbB gene was significantly up-regulated in wild ginseng as compared to cultivated ginseng. Thus, the p-psbB gene may be one of the important markers of wild ginseng.

Study of Gene-gene Interaction within GNB3, ACE, ADRB3, ADRB2 among Korean Female Subject (한국인 비만 여성의 GNB3, ACE, ADRB3, ADRB2 유전자 다형성간의 상호관계에 관한 연구)

  • Choi Hyun;Bae Hyun su;Hong Moo chang;Shin Hyun Dae;Shin Min Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1426-1436
    • /
    • 2004
  • There have been several reports on the relationship between G protein β3 subunit gene (GNB3), angiotensin converting enzyme gene (ACE), β3-adrenergic receptor gene (ADRB3), and β2-adrenergic receptor gene (ADRB2) genotype and obesity or obesity related disease. The objective of this study was to examine the relationship between the combinations of these four genes' polymorphism and probability of obesity related disease in Korean female subjects. The experimental group was consisted of 85 obese Korean female subjects (body mass index, BMI≥27㎏/㎡). To determine the polymorphism, genomic DNA was isolated, and PCR was performed. Serological examinations (fasting plasma glucose, FPG; aspartate aminotranferase, AST; alanine aminotransferase, ALT; total cholesterol, TC; triglyceride, TG; high density lipoprotein-cholesterol, HDL; low density lipoprotein-choles terol, LDL) were carried by an autoanalyzer and serological methods. BMI, waist circumference (WC), hip circumference and waist hip ratio (WHR) were measured. Consequencely in the analysis with grouping of general genotyping and variant allele carrier/non-carrier, the result was not significantly different within all gene combinations and polymorphic pairings except higher waist circumference in Arg16Arg group of ADRB2 codon16 (P=0.024). And there was no significantly contrast result about age, height, weight, AST and ALT that are index feature of liver and gall bladder disease in polymorphic pairings of gene combinations. However, the statistical analysis of waist-hip ratio and waist circumference that could be recognized as the physical type of obesity showed T-Arg16 pairing carrier in GNB3-ADRB2 codon16 combination had increased WHR and WC significantly (P=0.046 and P=0.015 respectively). Futhermore, the levels of total cholesterol (TC) and low density lipoprotein choresteral (LDL) were significantly lower in C-I pairing of GNB3-ACE combination (P=0.032 and P=0.005). These results suggest that the T-Arg16 pairing carrier in GNB3-ADRB2 codon16 gene might have increased waist circumference and C-I pairing carrier in GNB3-ACE combination have lower possibility of contraction of cardiovascular disease related cholesterol and LDL despite of obese state.