• 제목/요약/키워드: Gene Analysis

검색결과 8,243건 처리시간 0.037초

Clinical significance of APOB inactivation in hepatocellular carcinoma

  • Lee, Gena;Jeong, Yun Seong;Kim, Do Won;Kwak, Min Jun;Koh, Jiwon;Joo, Eun Wook;Lee, Ju-Seog;Kah, Susie;Sim, Yeong-Eun;Yim, Sun Young
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.7.1-7.12
    • /
    • 2018
  • Recent findings from The Cancer Genome Atlas project have provided a comprehensive map of genomic alterations that occur in hepatocellular carcinoma (HCC), including unexpected mutations in apolipoprotein B (APOB). We aimed to determine the clinical significance of this non-oncogenetic mutation in HCC. An Apob gene signature was derived from genes that differed between control mice and mice treated with siRNA specific for Apob (1.5-fold difference; P < 0.005). Human gene expression data were collected from four independent HCC cohorts (n = 941). A prediction model was constructed using Bayesian compound covariate prediction, and the robustness of the APOB gene signature was validated in HCC cohorts. The correlation of the APOB signature with previously validated gene signatures was performed, and network analysis was conducted using ingenuity pathway analysis. APOB inactivation was associated with poor prognosis when the APOB gene signature was applied in all human HCC cohorts. Poor prognosis with APOB inactivation was consistently observed through cross-validation with previously reported gene signatures (NCIP A, HS, high-recurrence SNUR, and high RS subtypes). Knowledge-based gene network analysis using genes that differed between low-APOB and high-APOB groups in all four cohorts revealed that low-APOB activity was associated with upregulation of oncogenic and metastatic regulators, such as HGF, MTIF, ERBB2, FOXM1, and CD44, and inhibition of tumor suppressors, such as TP53 and PTEN. In conclusion, APOB inactivation is associated with poor outcome in patients with HCC, and APOB may play a role in regulating multiple genes involved in HCC development.

A genome-wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.)

  • Md. Abdur Rauf Sarkar;Salim Sarkar;Md Shohel Ul Islam;Fatema Tuz Zohra;Shaikh Mizanur Rahman
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.36.1-36.19
    • /
    • 2023
  • The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.

Identification and Analysis of the Novel pGAPDH-w Gene Differentially Expressed in Wild Ginseng

  • Han, Young-Ju;Kwon, Ki-Rok;Kang, Won-Mo;Jeon, Eun-Yi;Jang, Jun-Hyeog
    • 대한약침학회지
    • /
    • 제16권1호
    • /
    • pp.30-36
    • /
    • 2013
  • Objective: Panax ginseng is one of the most medicinally used herbal medicines in the world. Wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention. However, little has actually been reported on the differences between wild ginseng and cultivated ginseng. Method: To identify wild ginseng-specific genes, we used suppressive subtraction hybridization. Results: We report that one of the clones isolated in this screen was the GAPDH (glyceraldehyde 3-phosphate dehydrogenase) gene (designated pGAPDH-w). DNA BLAST sequence analysis revealed that this pGAPDH-w gene contained novel sequences of 94 bp. RT-PCR results showed that the expression of the pGAPDH-w gene was significantly up-regulated in the wild ginseng as compared with the cultivated ginseng. Conclusion: The pGAPDH-w gene may be one of the important markers of wild ginseng.

토끼 수정란에서 Green Fluorescent Protein 유전자의 발현 (Expression of Green Fluorescent Protein(GFP) Gene in Rabbit Embryos)

  • 강태영;윤희준;채영진;이항;이효종
    • 한국수정란이식학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 1999
  • The efficiency of transgenic livestock animal production may be improved by early selection of transgenci preimplantation embryos. To examine the possibility of GFP gene as a non-invasive marker for the early screening of transgenic embryo, the GFP gene was microinjected into rabbit zygotes and the later stages of preimplantation embryos were examined for the expression of GFP. The presence of injected DNA was detected by PCR analysis and the expression of GFP was detected by observing green fluorescence in embryos under a fluorescent microscope. Out of 108 GFP gene-injected rabbit zygotes, seventy three(67.6%) were fluorescence-positive. When 11 fluroresecence-positive blastocysts were analyzed for the presence of GFP gene by PCR, 6(54.5%) were positive, and all of the 8 flrouescence-negative blastocysts were also negative by PCR. The results indicate that the screening of transgene in rabbit embryos by PCR analysis and GFP detection could be a promising method for the preselection of transgenic embryos.

  • PDF

중금속 노출에 따른 리파리 깔다구에서의 ADH 유전자의 발현 및 특성 (Characterization and Expression of Chironomus riparius Alcohol Dehydrogenase Gene under Heavy Metal Stress)

  • 박기연;곽인실
    • Environmental Analysis Health and Toxicology
    • /
    • 제24권2호
    • /
    • pp.107-117
    • /
    • 2009
  • Metal pollution of aquatic ecosystems is a problem of economic and health importance. Information regarding molecular responses to metal exposure is sorely needed in order to identify potential biomarkers. To determine the effects of heavy metals on chironomids, the full-length cDNA of alcohol dehydrogenase (ADH3) from Chironomus riparius was determined through molecular cloning and rapid amplification of cDNA ends (RACE). The expression of ADH3 was analyzed under various cadmium and copper concentrations. A comparative and phylogenetic study among different orders of insects and vertebrates was carried out through analysis of sequence databases. The complete cDNA sequence of the ADH3 gene was 1134 bp in length. The sequence of C. riparius ADH3 shows a low degree of amino acid identity (around 70%) with homologous sequences in other insects. After exposure of C. riparius to various concentrations of copper, ADH3 gene expression significantly decreased within 1 hour. The ADH3 gene expression was also suppressed in C. riparius after cadmium exposure for 24 hour. However, the effect of cadmium on ADH3 gene expression was transient in C. riparius. The results show that the suppression of ADH3 gene by copper exposure could be used as a possible biomarker in aquatic environmental monitoring and imply differential toxicity to copper and cadmium in C. riparius larvae.

Transcriptome analysis of the short-term photosynthetic sea slug Placida dendritica

  • Han, Ji Hee;Klochkova, Tatyana A.;Han, Jong Won;Shim, Junbo;Kim, Gwang Hoon
    • ALGAE
    • /
    • 제30권4호
    • /
    • pp.303-312
    • /
    • 2015
  • The intimate physical interaction between food algae and sacoglossan sea slug is a pertinent system to test the theory that “you are what you eat.” Some sacoglossan mollusks ingest and maintain chloroplasts that they acquire from the algae for photosynthesis. The basis of photosynthesis maintenance in these sea slugs was often explained by extensive horizontal gene transfer (HGT) from the food algae to the animal nucleus. Two large-scale expressed sequence tags databases of the green alga Bryopsis plumosa and sea slug Placida dendritica were established using 454 pyrosequencing. Comparison of the transcriptomes showed no possible case of putative HGT, except an actin gene from P. dendritica, designated as PdActin04, which showed 98.9% identity in DNA sequence with the complementary gene from B. plumosa, BpActin03. Highly conserved homologues of this actin gene were found from related green algae, but not in other photosynthetic sea slugs. Phylogenetic analysis showed incongruence between the gene and known organismal phylogenies of the two species. Our data suggest that HGT is not the primary reason underlying the maintenance of short-term kleptoplastidy in Placida dendritica.

Involvement of Cytochrome c Oxidase Subunit I Gene during Neuronal Differentiation of PC12 Cells

  • Kang, Hyo-Jung;Chung, Jun-Mo;Lee, See-Woo
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 1997
  • It is becoming increasingly evident that significant changes in gene expression occur during the course of neuronal differentiation. Thus, it should be possible to gain information about the biochemical events by identifying differentially expressed genes in neuronal differentiation The PC12 cell line is a useful model system to investigate the molecular mechanism underlying neuronal differentiation and has been used extensively for the study of the molecular events that underlie the biological actions of nerve growth factor (NGF). In this study, we report an application of the recently described mRNA differential display method to analyze differential gene expression during neuronal differentiation. Using this technique, we have identified several cDNA tags expressed differentially during neuronal differentiation. Interestingly, one of these clones was cytochrome c oxidase subunit I (COX I) gene. The differential expression of COX I gene was confirmed by Northern blot analysis as well as RT-PCR. Southern blot analysis of the genomic DNA of PC12 cells revealed that COX I is a single gene. Induction of the oxidative enzyme might reflect the energy requirement in neuronal differentiation.

  • PDF

Molecular Cloning, Sequencing, and Expression of a Fibrinolytic Serine-protease Gene from the Earthworm Lumbricus rubellus

  • Cho, Il-Hwan;Choi, Eui-Sung;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.574-581
    • /
    • 2004
  • The full-length cDNA of the lumbrokinase fraction 6 (F6) protease gene of Lumbricus rubellus was amplified using an mRNA template, sequenced and expressed in E. coli cells. The F6 protease gene consisted of pro- and mature sequences by gene sequence analysis, and the protease was translated and modified into active mature polypeptide by N-terminal amino acid sequence analysis of the F6 protease. The pro-region of F6 protease consisted of the 44 residues from methionine-1 to lysine-44, and the mature polypeptide sequence (239 amino acid residues and one stop codon; 720 bp) started from isoleucine-45 and continued to the terminal residue. F6 protease gene clones having pro-mature sequence and mature sequence produced inclusion bodies in E. coli cells. When inclusion bodies were orally administrated rats, generated thrombus weight in the rat' venous was reduced by approximately 60% versus controls. When the inclusion bodies were solubilized in pepsin and/or trypsin solutions, the solubilized enzymes showed hemolytic activity in vitro. It was concluded the F6 protease has hemolytic activity, and that it is composed of pro- and mature regions.

Genetic Diversity and Gene Flow Patterns in Pollicipes mitella in Korea Inferred from Mitochondrial DNA Sequence Analysis

  • Yoon, Moongeun;Jung, Ju-Yeon;Kim, Dong Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제16권4호
    • /
    • pp.243-251
    • /
    • 2013
  • Genetic diversity and gene flow patterns in Pollicipes mitella were investigated with a nucleotide sequence analysis of 514 base pairs from the mitochondrial cytochrome c oxidase subunit I gene (COI) in 124 samples collected from six Korean populations. In total, 59 haplotypes were defined by 40 variable nucleotide sites in the COI region. The haplotypes had shallow haplotype genealogy and no geographic associations. All populations had high haplotype diversity (0.909 to 0.979) and low nucleotide diversity (0.0055 to 0.0098). The haplotypes with recently diverged nucleotides were distributed by long-range larvae dispersal among regional populations. The pairwise fixation indices ($F_{ST}$) estimated with the exact test and migration rates indicate that substantial gene flow has occurred among populations as a result of sea currents, except between the Uljin (East Sea coast) and other Korean populations. This suggests that significant genetic differentiation and low migration rates have affected the Uljin population.

Development of transgenic disease-resistant root stock for the growth of watermelon

  • Cho, Song-Mi;Chung, Soo-Jin;Moon, Sun-Jin;Kim, Kwang-Sang;Kim, Young-Cheol;Cho, Baik-Ho
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2004년도 생명공학 실용화를 위한 비젼
    • /
    • pp.62-65
    • /
    • 2004
  • To protect the watermelon against soil-borne pathogens, we are currently producing disease-resistant transgenic root stock for the growth of watermelon, A defensin gene (J1-1) from Capsicum annum, a ACC deaminase gene from Pseudomonas syringae, a galactinol synthase (CsGolS) gene from Cucumis sativus, and a WRKY (CvWRKY2) gene from Citullus vulgaris were used as transgenes for disease resistance. The gene were transformed into a inbred line (6-2-2) of watermelon, Kong-dae watermelon and a inbred line (GO702S) of gourd, respectively, by Agrobacterium-mediated transformation. Putative transgenic plants were selected in medium containing 100mg/L kanamycin, and then integration of the genes into the genomic DNA were demonstrated by PCR analysis. Successful integration of the gene in regenerated plants was also confirmed by PCR (Figf 1), genomic Southern blot (Fig 2), RT-PCR (Fig 3), and Northern blot analysis(Fig 4). Several T1 lines having different transgene were produced, and disease resistance of the T1 lines are under estimation.

  • PDF