DOI QR코드

DOI QR Code

Clinical significance of APOB inactivation in hepatocellular carcinoma

  • Lee, Gena (Department of Systems Biology, The University of Texas MD Anderson Cancer Center) ;
  • Jeong, Yun Seong (Department of Systems Biology, The University of Texas MD Anderson Cancer Center) ;
  • Kim, Do Won (Department of Systems Biology, The University of Texas MD Anderson Cancer Center) ;
  • Kwak, Min Jun (Department of Systems Biology, The University of Texas MD Anderson Cancer Center) ;
  • Koh, Jiwon (Department of Pathology, Seoul National University College of Medicine) ;
  • Joo, Eun Wook (Department of Gynecology, School of Medicine, Kyung Hee University) ;
  • Lee, Ju-Seog (Department of Systems Biology, The University of Texas MD Anderson Cancer Center) ;
  • Kah, Susie (Department of Internal Medicine, School of Medicine, Kyung Hee University) ;
  • Sim, Yeong-Eun (Department of Internal Medicine, School of Medicine, Kyung Hee University) ;
  • Yim, Sun Young (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
  • Received : 2018.02.10
  • Accepted : 2018.07.18
  • Published : 2018.11.30

Abstract

Recent findings from The Cancer Genome Atlas project have provided a comprehensive map of genomic alterations that occur in hepatocellular carcinoma (HCC), including unexpected mutations in apolipoprotein B (APOB). We aimed to determine the clinical significance of this non-oncogenetic mutation in HCC. An Apob gene signature was derived from genes that differed between control mice and mice treated with siRNA specific for Apob (1.5-fold difference; P < 0.005). Human gene expression data were collected from four independent HCC cohorts (n = 941). A prediction model was constructed using Bayesian compound covariate prediction, and the robustness of the APOB gene signature was validated in HCC cohorts. The correlation of the APOB signature with previously validated gene signatures was performed, and network analysis was conducted using ingenuity pathway analysis. APOB inactivation was associated with poor prognosis when the APOB gene signature was applied in all human HCC cohorts. Poor prognosis with APOB inactivation was consistently observed through cross-validation with previously reported gene signatures (NCIP A, HS, high-recurrence SNUR, and high RS subtypes). Knowledge-based gene network analysis using genes that differed between low-APOB and high-APOB groups in all four cohorts revealed that low-APOB activity was associated with upregulation of oncogenic and metastatic regulators, such as HGF, MTIF, ERBB2, FOXM1, and CD44, and inhibition of tumor suppressors, such as TP53 and PTEN. In conclusion, APOB inactivation is associated with poor outcome in patients with HCC, and APOB may play a role in regulating multiple genes involved in HCC development.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea University Anam Hospital

References

  1. Chin, L. & Gray, J. W. Translating insights from the cancer genome into clinical practice. Nature 452, 553-563 (2008). https://doi.org/10.1038/nature06914
  2. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87-108 (2015). https://doi.org/10.3322/caac.21262
  3. Forner, A., Llovet, J. M. & Bruix, J. Hepatocellular carcinoma. Lancet 379, 1245-1255 (2012). https://doi.org/10.1016/S0140-6736(11)61347-0
  4. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7-30 (2017). https://doi.org/10.3322/caac.21387
  5. El-Serag, H. B. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 127, S27-S34 (2004). https://doi.org/10.1053/j.gastro.2004.09.013
  6. Shaw, J. J. & Shah, S. A. Rising incidence and demographics of hepatocellular carcinoma in the USA: what does it mean? Expert Rev. Gastroenterol. Hepatol. 5, 365-370 (2011). https://doi.org/10.1586/egh.11.20
  7. Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71-96 (2008). https://doi.org/10.3322/CA.2007.0010
  8. Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56-66 (2017). https://doi.org/10.1016/S0140-6736(16)32453-9
  9. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378-390 (2008). https://doi.org/10.1056/NEJMoa0708857
  10. Totoki, Y. et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 43, 464-469 (2011). https://doi.org/10.1038/ng.804
  11. Guichard, C. et al. Integrated analysis of somatic mutations and focal copynumber changes identifies. Nat. Genet. 44, 694-698 (2012). https://doi.org/10.1038/ng.2256
  12. Huang, J. et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat. Genet. 44, 1117-1121 (2012). https://doi.org/10.1038/ng.2391
  13. Cleary, S. P. et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology 58, 1693-1702 (2013). https://doi.org/10.1002/hep.26540
  14. Fujimoto, A. et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 48, 500-509 (2016). https://doi.org/10.1038/ng.3547
  15. Lee, J. S. The mutational landscape of hepatocellular carcinoma. Clin. Mol. Hepatol. 21, 220-229 (2015). https://doi.org/10.3350/cmh.2015.21.3.220
  16. Lee, J. S. Exploring cancer genomic data from the cancer genome atlas project. BMB Rep. 49, 607-611 (2016). https://doi.org/10.5483/BMBRep.2016.49.11.145
  17. Consortium, T. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327-1341 (2017). https://doi.org/10.1016/j.cell.2017.05.046
  18. Schonfeld, G. Familial hypobetalipoproteinemia: a review. J. Lipid Res. 44, 878-883 (2003). https://doi.org/10.1194/jlr.R300002-JLR200
  19. Lonardo, A., Tarugi, P., Ballarini, G. & Bagni, A. Familial heterozygous hypobetalipoproteinemia, extrahepatic primary malignancy. Dig. Dis. Sci. 43, 2489-2492 (1998). https://doi.org/10.1023/A:1026646618643
  20. Lee, J. S. et al. Application of comparative functional genomics to identify bestfit mouse models to study human cancer. Nat. Genet. 36, 1306-1311 (2004). https://doi.org/10.1038/ng1481
  21. Lee, J. S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410-416 (2006). https://doi.org/10.1038/nm1377
  22. Park, Y. Y. et al. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 63, 159-172 (2016). https://doi.org/10.1002/hep.28223
  23. Tadin-Strapps, M. et al. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model. J. Lipid Res. 52, 1084-1097 (2011). https://doi.org/10.1194/jlr.M012872
  24. Dong, B. et al. Activating CAR and beta-catenin induces uncontrolled liver growth and. Nat. Commun. 6, 5944 (2015). https://doi.org/10.1038/ncomms6944
  25. Lim, H. Y. et al. Prediction of disease-free survival in hepatocellular carcinoma by gene. Ann. Surg. Oncol. 20, 3747-3753 (2013). https://doi.org/10.1245/s10434-013-3070-y
  26. Roessler, S. et al. A unique metastasis gene signature enables prediction of tumor relapse in. Cancer Res. 70, 10202-10212 (2010). https://doi.org/10.1158/0008-5472.CAN-10-2607
  27. Roessler, S. et al. Integrative genomic identification of genes on 8p associated with hepatocellular. Gastroenterology 142, 957-966 (2012). https://doi.org/10.1053/j.gastro.2011.12.039
  28. Lee, J. S. et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40, 667-676 (2004). https://doi.org/10.1002/hep.20375
  29. Thorgeirsson, S. S., Lee, J. S. & Grisham, J. W. Functional genomics of hepatocellular carcinoma. Hepatology 43, S145-S150 (2006). https://doi.org/10.1002/hep.21063
  30. Woo, H. G. et al. Gene expression-based recurrence prediction of hepatitis B virus-related human hepatocellular carcinoma. Clin. Cancer Res. 14, 2056-2064 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1473
  31. Kim, S. M. et al. Sixty-five gene-based risk score classifier predicts overall survival in hepatocellular carcinoma. Hepatology 55, 1443-1452 (2012). https://doi.org/10.1002/hep.24813
  32. Kim, J. H. et al. Genomic predictors for recurrence patterns of hepatocellular carcinoma: model derivation and validation. PLoS Med. 11, e1001770 (2014). https://doi.org/10.1371/journal.pmed.1001770
  33. Sohn, B. H. et al. Inactivation of Hippo pathway is significantly associated with poor prognosis in hepatocellular carcinoma. Clin. Cancer Res. 22, 1256-1264 (2016). https://doi.org/10.1158/1078-0432.CCR-15-1447
  34. Oh, S. C. et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat. Commun. 9, 1777 (2018). https://doi.org/10.1038/s41467-018-04179-8
  35. Simon, R. et al. Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 3, 11-17 (2007).
  36. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868 (1998). https://doi.org/10.1073/pnas.95.25.14863
  37. Kaposi-Novak, P. et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest. 116, 1582-1595 (2006). https://doi.org/10.1172/JCI27236
  38. Ahn, S. M. et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 60, 1972-1982 (2014). https://doi.org/10.1002/hep.27198
  39. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on. Nat. Genet. 44, 760-764 (2012). https://doi.org/10.1038/ng.2291
  40. Cefalu, A. B. et al. A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia. Arterioscler. Thromb. Vasc. Biol. 33, 2021-2025 (2013). https://doi.org/10.1161/ATVBAHA.112.301101
  41. Welty, F. K. Hypobetalipoproteinemia and abetalipoproteinemia. Curr. Opin. Lipidol. 25, 161-168 (2014). https://doi.org/10.1097/MOL.0000000000000072
  42. Tarugi, P. & Lonardo, A. Heterozygous familial hypobetalipoproteinemia associated with fatty liver. Am. J. Gastroenterol. 92, 1400-1402 (1997).
  43. Bonnefont-Rousselot, D. et al. Cryptogenic cirrhosis in a patient with familial hypocholesterolemia due to a new truncated form of apolipoprotein B. Eur. J. Gastroenterol. Hepatol. 21, 104-108 (2009). https://doi.org/10.1097/MEG.0b013e3282ffd9f8
  44. Lonardo, A., Tarugi, P., Ballarini, G. & Bagni, A. Familial heterozygous hypobetalipoproteinemia, extrahepatic primary malignancy, and hepatocellular carcinoma. Dig. Dis. Sci. 43, 2489-2492 (1998). https://doi.org/10.1023/A:1026646618643
  45. Hegele, R. A. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10, 109-121 (2009).
  46. Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl. Acad. Sci. USA 101, 2082-2087 (2004). https://doi.org/10.1073/pnas.0308617100
  47. Watanabe, S., Horie, Y. & Suzuki, A. Hepatocyte-specific Pten-deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatol. Res. 33, 161-166 (2005). https://doi.org/10.1016/j.hepres.2005.09.026
  48. Wang, L. et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol. Res. 37, 389-396 (2007). https://doi.org/10.1111/j.1872-034X.2007.00042.x
  49. Whittaker, S., Marais, R. & Zhu, A. X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29, 4989-5005 (2010). https://doi.org/10.1038/onc.2010.236
  50. Wu, S. K. et al. Expression of PTEN, PPM1A and P-Smad2 in hepatocellular carcinomas and adjacent. World J. Gastroenterol. 13, 4554-4559 (2007). https://doi.org/10.3748/wjg.v13.i34.4554
  51. Qiu, W. et al. Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B-containing lipoproteins. Hepatology 48, 1799-1809 (2008). https://doi.org/10.1002/hep.22565
  52. Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating. Nat. Rev. Drug Discov. 5, 835-844 (2006). https://doi.org/10.1038/nrd2130
  53. Wang, F. B., Zhu, C. L., Liu, X. & Gao, G. S. HBV inhibits apoB production via the suppression of MTP expression. Lipids Health Dis. 10, 207 (2011). https://doi.org/10.1186/1476-511X-10-207

Cited by

  1. Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-39998-2
  2. Elevated apolipoprotein B predicts poor postsurgery prognosis in patients with hepatocellular carcinoma vol.12, pp.None, 2018, https://doi.org/10.2147/ott.s192631
  3. Characterization of Lipid and Lipid Droplet Metabolism in Human HCC vol.8, pp.5, 2018, https://doi.org/10.3390/cells8050512
  4. Apolipoproteins and cancer vol.8, pp.16, 2018, https://doi.org/10.1002/cam4.2587
  5. Low Expression of APOB mRNA or Its Hypermethylation Predicts Favorable Overall Survival in Patients with Low-Grade Glioma vol.13, pp.None, 2018, https://doi.org/10.2147/ott.s257794
  6. ApoB/ApoA-1 Ratio as a Novel Prognostic Predictor in Patients With Primary Small Cell Carcinoma of the Esophagus vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.00610
  7. Exploring Metabolic Consequences of CPS1 and CAD Dysregulation in Hepatocellular Carcinoma by Network Reconstruction vol.7, pp.None, 2020, https://doi.org/10.2147/jhc.s239039
  8. LINC02499, a novel liver‐specific long non‐coding RNA with potential diagnostic and prognostic value, inhibits hepatocellular carcinoma cell proliferation, migration, and invasion vol.50, pp.6, 2018, https://doi.org/10.1111/hepr.13491
  9. Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-61298-3
  10. Remodeling of Mitochondrial Plasticity: The Key Switch from NAFLD/NASH to HCC vol.22, pp.8, 2018, https://doi.org/10.3390/ijms22084173
  11. The Emerging Factors and Treatment Options for NAFLD-Related Hepatocellular Carcinoma vol.13, pp.15, 2018, https://doi.org/10.3390/cancers13153740
  12. The Emerging Role of Stress Granules in Hepatocellular Carcinoma vol.22, pp.17, 2018, https://doi.org/10.3390/ijms22179428