• Title/Summary/Keyword: Gene Algorithm

Search Result 232, Processing Time 0.024 seconds

An estimation method for stochastic reaction model (확률적 방법에 기반한 화학 반응 모형의 모수 추정 방법)

  • Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.813-826
    • /
    • 2015
  • This research deals with an estimation method for kinetic reaction model. The kinetic reaction model is a model to explain spread or changing process based on interaction between species on the Biochemical area. This model can be applied to a model for disease spreading as well as a model for system Biology. In the search, we assumed that the spread of species is stochastic and we construct the reaction model based on stochastic movement. We utilized Gillespie algorithm in order to construct likelihood function. We introduced a Bayesian estimation method using Markov chain Monte Carlo methods that produces more stable results. We applied the Bayesian estimation method to the Lotka-Volterra model and gene transcription model and had more stable estimation results.

Problem-Independent Gene Reordering for Genetic Algorithms (유전 알고리즘에서의 문제 독립적 유전자 재배열)

  • Kwon Yung-Keun;Kim Yong-Hyuk;Moon Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.974-983
    • /
    • 2005
  • In genetic algorithms with lotus-based encoding, static gene reordering is to locate the highly related genes closely together. It helps the genetic algorithms to create and preserve the schema of high-quality effectively. In this paper, we propose a static reordering framework for linear locus-based encoding. It differs from existing reorderings in that it is independent of problem-specific knowledge. It makes a complete graph where weights represent the interelationship between each pair of genes. And, it transforms the graph into a unweighted sparse graph by choosing the edges having relatively high weight. It finds a gene reordering by graph search method. Through the wide experiments about several problems, the method proposed in this paper shows significant performance improvement as compared with the genetic algorithm that does not rearrange genes.

Prediction Model for Specific Cutting Energy of Pick Cutters Based on Gene Expression Programming and Particle Swarm Optimization (유전자 프로그래밍과 개체군집최적화를 이용한 픽 커터의 절삭비에너지 예측모델)

  • Hojjati, Shahabedin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.651-669
    • /
    • 2018
  • This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.

An Effective Method for Generating Images Using Genetic Algorithm (유전자 알고리즘을 이용한 효과적인 영상 생성 기법)

  • Cha, Joo Hyoung;Woo, Young Woon;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.896-902
    • /
    • 2019
  • In this paper, we proposed two methods to automatically generate color images similar to existing images using genetic algorithms. Experiments were performed on two different sizes($256{\times}256$, $512{\times}512$) of gray and color images using each of the proposed methods. Experimental results show that there are significant differences in the evolutionary performance of each technique in genetic modeling for image generation. In the results, evolving the whole image into sub-images evolves much more effective than modeling and evolving it into a single gene, and the generated images are much more sophisticated. Therefore, we could find that gene modeling, selection method, crossover method and mutation rate, should be carefully decided in order to generate an image similar to the existing image in the future, or to learn quickly and naturally to generate an image synthesized from different images.

An Algorithm for Spot Addressing in Microarray using Regular Grid Structure Searching (균일 격자 구조 탐색을 이용한 마이크로어레이 반점 주소 결정 알고리즘)

  • 진희정;조환규
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.9
    • /
    • pp.514-526
    • /
    • 2004
  • Microarray is a new technique for gene expression experiment, which has gained biologist's attention for recent years. This technology enables us to obtain hundreds and thousands of expression of gene or genotype at once using microarray Since it requires manual work to analyze patterns of gene expression, we want to develop an effective and automated tools to analyze microarray image. However it is difficult to analyze DNA chip images automatically due to several problems such as the variation of spot position, the irregularity of spot shape and size, and sample contamination. Especially, one of the most difficult problems in microarray analysis is the block and spot addressing, which is performed by manual or semi automated work in all the commercial tools. In this paper we propose a new algorithm to address the position of spot and block using a new concept of regular structure grid searching. In our algorithm, first we construct maximal I-regular sequences from the set of input points. Secondly we calculate the rotational angle and unit distance. Finally, we construct I-regularity graph by allowing pseudo points and then we compute the spot/block address using this graph. Experiment results showed that our algorithm is highly robust and reliable. Supplement information is available on http://jade.cs.pusan.ac.kr/~autogrid.

The Application of Machine Learning Algorithm In The Analysis of Tissue Microarray; for the Prediction of Clinical Status

  • Cho, Sung-Bum;Kim, Woo-Ho;Kim, Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.366-370
    • /
    • 2005
  • Tissue microarry is one of the high throughput technologies in the post-genomic era. Using tissue microarray, the researchers are able to investigate large amount of gene expressions at the level of DNA, RNA, and protein The important aspect of tissue microarry is its ability to assess a lot of biomarkers which have been used in clinical practice. To manipulate the categorical data of tissue microarray, we applied Bayesian network classifier algorithm. We identified that Bayesian network classifier algorithm could analyze tissue microarray data and integrating prior knowledge about gastric cancer could achieve better performance result. The results showed that relevant integration of prior knowledge promote the prediction accuracy of survival status of the immunohistochemical tissue microarray data of 18 tumor suppressor genes. In conclusion, the application of Bayesian network classifier seemed appropriate for the analysis of the tissue microarray data with clinical information.

  • PDF

Development of Correlation Based Feature Selection Method by Predicting the Markov Blanket for Gene Selection Analysis

  • Adi, Made;Yun, Zhen;Keong, Kwoh-Chee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.183-187
    • /
    • 2005
  • In this paper, we propose a heuristic method to select features using a Two-Phase Markov Blanket-based (TPMB) algorithm. The first phase, filtering phase, of TPMB algorithm works by filtering the obviously redundant features. A non-linear correlation method based on Information theory is used as a metric to measure the redundancy of a feature [1]. In second phase, approximating phase, the Markov Blanket (MB) of a system is estimated by employing the concept of cross entropy to identify the MB. We perform experiments on microarray data and report two popular dataset, AML-ALL [3] and colon tumor [4], in this paper. The experimental results show that the TPMB algorithm can significantly reduce the number of features while maintaining the accuracy of the classifiers.

  • PDF

A STUDY ON DEM GENE]RATON USING POLYNOMIAL CAMERA MODEL IN SATELLITE IMAGERY

  • Jeon, Seung-Hun;Kim, Sung-Chai;Lee, Heung-Jae;Lee, Kae-hei
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.518-523
    • /
    • 2002
  • Nowadays the Rational Function Model (RFM), an abstract sensor model, is substituting physical sensor models for highly complicated imaging geometry. But RFM is algorithm to be required many Ground Control Points (GCP). In case of RFM of the third order, At least forty GCP are required far RFM generation. The purpose of this study is to research more efficient algorithm on GCP and accurate algorithm similar to RFM. The Polynomial Camera Model is relatively accurate and requires a little GCP in comparisons of RFM. This paper introduces how to generate Polynomial Camera Model and fundamental algorithms for construction of 3-D topographic data using the Polynomial Camera Model information in the Kompsat stereo pair and describes how to generate the 3-D ground coordinates by manual matching. Finally we tried to extract height information for the whole image area with the stereo matching technique based on the correlation.

  • PDF

Development of a Washout Algorithm Using the Signal Compression Method

  • Kang, Eu-Gene;You, Ki-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.1-101
    • /
    • 2002
  • Vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, it is difficult to select the proper cutoff frequency of filters in washout algorithm. This paper introduces the signal compression method as an effective method to analyze the sim...

  • PDF

Decision Making Algorithm for Adult Spinal Deformity Surgery

  • Kim, Yongjung J.;Hyun, Seung-Jae;Cheh, Gene;Cho, Samuel K.;Rhim, Seung-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Adult spinal deformity (ASD) is one of the most challenging spinal disorders associated with broad range of clinical and radiological presentation. Correct selection of fusion levels in surgical planning for the management of adult spinal deformity is a complex task. Several classification systems and algorithms exist to assist surgeons in determining the appropriate levels to be instrumented. In this study, we describe our new simple decision making algorithm and selection of fusion level for ASD surgery in terms of adult idiopathic idiopathic scoliosis vs. degenerative scoliosis.