• 제목/요약/키워드: Gene Algorithm

검색결과 232건 처리시간 0.021초

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

  • Pingping Li;Feng Zhang
    • Journal of Information Processing Systems
    • /
    • 제20권4호
    • /
    • pp.432-441
    • /
    • 2024
  • To improve the security of gene information and the accuracy of matching, this paper designs a homomorphic encryption algorithm for gene matching based on cloud computing environment. Firstly, the gene sequences of cloud files entered by users are collected, which are converted into binary code by binary function, so that the encrypted text is obviously different from the original text. After that, the binary code of genes in the database is compared with the generated code to complete gene matching. Experimental analysis indicates that when the number of fragments in a 1 GB gene file is 65, the minimum encryption time of the algorithm is 80.13 ms. Aside from that, the gene matching time and energy consumption of this algorithm are the least, which are 85.69 ms and 237.89 J, respectively.

Genetic Algorithm을 이용한 멀티 피크 빔의 최적방향탐색 (Sweet spot search of multi peak beam using Genetic Algorithm)

  • 황종우;임성진;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(1)
    • /
    • pp.301-304
    • /
    • 2004
  • In this paper, we propose a method to find the optimal direction of the multi beam between each station on the point-to-point link by genetic algorithm. In the proposed method, maximum value in optimal direction on each station is used as a fitness function. The beam of millimeter wave generates a lot of multi-peak because of much influence of noise. About each gene, we simulated this method using 16bit, 32bit, and 32bit split algorithm. 32bit split uses 16bit gene information. Each antenna makes 32bit gene information by adding gene information of two antennas having 16bit gene. Through the proposed method, we could have gotten a good output without 32bit gene information.

  • PDF

소형 유전자 알고리즘을 이용한 새로운 스테레오 정합 (A New Stereo Matching Using Compact Genetic Algorithm)

  • 한규필;배태면;권순규;하영호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.474-478
    • /
    • 1999
  • Genetic algorithm is an efficient search method using principles of natural selection and population genetics. In conventional genetic algorithms, however, the size of gene pool should be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental teaming based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since the Proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even if the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF

Informative Gene Selection Method in Tumor Classification

  • Lee, Hyosoo;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • 제2권1호
    • /
    • pp.19-29
    • /
    • 2004
  • Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.

유전자 알고리즘을 이용한 Promoter 예측 (Promoter Prediction using Genetic Algorithm)

  • 오민경;김창훈;김기봉;공은배;김승목
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.12-14
    • /
    • 1999
  • Promoter는 transcript start site 앞부분에 위치하여 RNA polymerase가 높은 친화성을 보이며 바인당하는 DNA상의 특별한 부위로서 여기서부터 DNA transcription이 시작된다. function이나 tissue-specific gene들의 그룹별로 그 promoter들의 특이한 패턴들의 조합을 발견함으로써 Specific한 transcription을 조절하는 것으로 알려져 있어 promoter로 인한 그 gene의 정보를 어느 정도 알 수가 있다. 사람의 housekeeping gene promoter들을 EPD(eukaryotic promoter database)와 EMBL nucleic acid sequence database로부터 수집하여 이것들 간에 의미 있게 나타나는 모든 패턴들을 optimization algorithm으로 알려진 genetic algorithm을 이용해서 찾아보았다.

  • PDF

A Implementation of Optimal Multiple Classification System using Data Mining for Genome Analysis

  • Jeong, Yu-Jeong;Choi, Gwang-Mi
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, more efficient classification result could be obtained by applying the combination of the Hidden Markov Model and SVM Model to HMSV algorithm gene expression data which simulated the stochastic flow of gene data and clustering it. In this paper, we verified the HMSV algorithm that combines independently learned algorithms. To prove that this paper is superior to other papers, we tested the sensitivity and specificity of the most commonly used classification criteria. As a result, the K-means is 71% and the SOM is 68%. The proposed HMSV algorithm is 85%. These results are stable and high. It can be seen that this is better classified than using a general classification algorithm. The algorithm proposed in this paper is a stochastic modeling of the generation process of the characteristics included in the signal, and a good recognition rate can be obtained with a small amount of calculation, so it will be useful to study the relationship with diseases by showing fast and effective performance improvement with an algorithm that clusters nodes by simulating the stochastic flow of Gene Data through data mining of BigData.

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GENE EXPRESSION PROGRAMMING

  • Li, Kangshun;Li, Yuanxiang;Mo, Haifang;Chen, Zhangxin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권2호
    • /
    • pp.83-89
    • /
    • 2005
  • In this paper a new algorithm of learning and evolving artificial neural networks using gene expression programming (GEP) is presented. Compared with other traditional algorithms, this new algorithm has more advantages in self-learning and self-organizing, and can find optimal solutions of artificial neural networks more efficiently and elegantly. Simulation experiments show that the algorithm of evolving weights or thresholds can easily find the perfect architecture of artificial neural networks, and obviously improves previous traditional evolving methods of artificial neural networks because the GEP algorithm imitates the evolution of the natural neural system of biology according to genotype schemes of biology to crossover and mutate the genes or chromosomes to generate the next generation, and the optimal architecture of artificial neural networks with evolved weights or thresholds is finally achieved.

  • PDF

Gene Algorithm of Crowd System of Data Mining

  • Park, Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • 제10권1호
    • /
    • pp.40-44
    • /
    • 2012
  • Data mining, which is attracting public attention, is a process of drawing out knowledge from a large mass of data. The key technique in data mining is the ability to maximize the similarity in a group and minimize the similarity between groups. Since grouping in data mining deals with a large mass of data, it lessens the amount of time spent with the source data, and grouping techniques that shrink the quantity of the data form to which the algorithm is subjected are actively used. The current grouping algorithm is highly sensitive to static and reacts to local minima. The number of groups has to be stated depending on the initialization value. In this paper we propose a gene algorithm that automatically decides on the number of grouping algorithms. We will try to find the optimal group of the fittest function, and finally apply it to a data mining problem that deals with a large mass of data.

Introduction to Gene Prediction Using HMM Algorithm

  • Kim, Keon-Kyun;Park, Eun-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.489-506
    • /
    • 2007
  • Gene structure prediction, which is to predict protein coding regions in a given nucleotide sequence, is the most important process in annotating genes and greatly affects gene analysis and genome annotation. As eukaryotic genes have more complicated structures in DNA sequences than those of prokaryotic genes, analysis programs for eukaryotic gene structure prediction have more diverse and more complicated computational models. There are Ab Initio method, Similarity-based method, and Ensemble method for gene prediction method for eukaryotic genes. Each Method use various algorithms. This paper introduce how to predict genes using HMM(Hidden Markov Model) algorithm and present the process of gene prediction with well-known gene prediction programs.

  • PDF

MCL 알고리즘을 사용한 유전자 발현 데이터 클러스터링 (Clustering Gene Expression Data by MCL Algorithm)

  • 손호선;류근호
    • 전자공학회논문지CI
    • /
    • 제45권4호
    • /
    • pp.27-33
    • /
    • 2008
  • 유전자 발현 데이터의 분석 기법 중 무감독 학습 기반의 클러스터링 기법은 생물학적 변화와 진의 발현 정도를 이해하는데 자주 사용되는 방법이다. 생명공학 연구에 있어서 그래프 기반의 MCL 알고리즘은 그래프 내의 노드들을 클러스터링 하는 알고리즘으로 빠르고 효과적이다. 우리는 기존의 MCL 알고리즘을 개선하여 마이크로어레이 데이터에 적용시켰다. MCL 알고리즘 수행 시 inflation과 대각선 항의 두 요인을 조정하는 시뮬레이션을 실행하였으며, 마코브 행렬을 이용하여 변환하였다. 또한 개선된 MCL 알고리즘에서는 더 명확한 클래스를 구분하기 위하여 각 열의 평균을 구한 후 그 값을 임계치로 사용하였다. 따라서 수정된 알고리즘은 기존의 알고리즘들보다 정확도를 높일 수 있었다. 즉, 실제 실험 결과 기존에 알려진 클래스와 비교했을 때 평균 70%의 정확도를 보였다. 또한, 다른 클러스터링 기법, K-means 알고리즘, 계층적 클러스터링 그리고 SOM 알고리즘을 비교 분석하였으며, 그 결과 MCL 알고리즘이 다른 클러스터링 기법보다 더 좋은 결과를 보임을 알 수 있다.