• Title/Summary/Keyword: Gene Algorithm

Search Result 232, Processing Time 0.022 seconds

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

  • Pingping Li;Feng Zhang
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.432-441
    • /
    • 2024
  • To improve the security of gene information and the accuracy of matching, this paper designs a homomorphic encryption algorithm for gene matching based on cloud computing environment. Firstly, the gene sequences of cloud files entered by users are collected, which are converted into binary code by binary function, so that the encrypted text is obviously different from the original text. After that, the binary code of genes in the database is compared with the generated code to complete gene matching. Experimental analysis indicates that when the number of fragments in a 1 GB gene file is 65, the minimum encryption time of the algorithm is 80.13 ms. Aside from that, the gene matching time and energy consumption of this algorithm are the least, which are 85.69 ms and 237.89 J, respectively.

Sweet spot search of multi peak beam using Genetic Algorithm (Genetic Algorithm을 이용한 멀티 피크 빔의 최적방향탐색)

  • Hwang Jong Woo;Lim Sung Jin;Eom Ki Hwan;Sato Yoichi
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.301-304
    • /
    • 2004
  • In this paper, we propose a method to find the optimal direction of the multi beam between each station on the point-to-point link by genetic algorithm. In the proposed method, maximum value in optimal direction on each station is used as a fitness function. The beam of millimeter wave generates a lot of multi-peak because of much influence of noise. About each gene, we simulated this method using 16bit, 32bit, and 32bit split algorithm. 32bit split uses 16bit gene information. Each antenna makes 32bit gene information by adding gene information of two antennas having 16bit gene. Through the proposed method, we could have gotten a good output without 32bit gene information.

  • PDF

A New Stereo Matching Using Compact Genetic Algorithm (소형 유전자 알고리즘을 이용한 새로운 스테레오 정합)

  • 한규필;배태면;권순규;하영호
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.474-478
    • /
    • 1999
  • Genetic algorithm is an efficient search method using principles of natural selection and population genetics. In conventional genetic algorithms, however, the size of gene pool should be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental teaming based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since the Proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even if the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF

Informative Gene Selection Method in Tumor Classification

  • Lee, Hyosoo;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 2004
  • Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.

Promoter Prediction using Genetic Algorithm (유전자 알고리즘을 이용한 Promoter 예측)

  • 오민경;김창훈;김기봉;공은배;김승목
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.12-14
    • /
    • 1999
  • Promoter는 transcript start site 앞부분에 위치하여 RNA polymerase가 높은 친화성을 보이며 바인당하는 DNA상의 특별한 부위로서 여기서부터 DNA transcription이 시작된다. function이나 tissue-specific gene들의 그룹별로 그 promoter들의 특이한 패턴들의 조합을 발견함으로써 Specific한 transcription을 조절하는 것으로 알려져 있어 promoter로 인한 그 gene의 정보를 어느 정도 알 수가 있다. 사람의 housekeeping gene promoter들을 EPD(eukaryotic promoter database)와 EMBL nucleic acid sequence database로부터 수집하여 이것들 간에 의미 있게 나타나는 모든 패턴들을 optimization algorithm으로 알려진 genetic algorithm을 이용해서 찾아보았다.

  • PDF

A Implementation of Optimal Multiple Classification System using Data Mining for Genome Analysis

  • Jeong, Yu-Jeong;Choi, Gwang-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, more efficient classification result could be obtained by applying the combination of the Hidden Markov Model and SVM Model to HMSV algorithm gene expression data which simulated the stochastic flow of gene data and clustering it. In this paper, we verified the HMSV algorithm that combines independently learned algorithms. To prove that this paper is superior to other papers, we tested the sensitivity and specificity of the most commonly used classification criteria. As a result, the K-means is 71% and the SOM is 68%. The proposed HMSV algorithm is 85%. These results are stable and high. It can be seen that this is better classified than using a general classification algorithm. The algorithm proposed in this paper is a stochastic modeling of the generation process of the characteristics included in the signal, and a good recognition rate can be obtained with a small amount of calculation, so it will be useful to study the relationship with diseases by showing fast and effective performance improvement with an algorithm that clusters nodes by simulating the stochastic flow of Gene Data through data mining of BigData.

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GENE EXPRESSION PROGRAMMING

  • Li, Kangshun;Li, Yuanxiang;Mo, Haifang;Chen, Zhangxin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.83-89
    • /
    • 2005
  • In this paper a new algorithm of learning and evolving artificial neural networks using gene expression programming (GEP) is presented. Compared with other traditional algorithms, this new algorithm has more advantages in self-learning and self-organizing, and can find optimal solutions of artificial neural networks more efficiently and elegantly. Simulation experiments show that the algorithm of evolving weights or thresholds can easily find the perfect architecture of artificial neural networks, and obviously improves previous traditional evolving methods of artificial neural networks because the GEP algorithm imitates the evolution of the natural neural system of biology according to genotype schemes of biology to crossover and mutate the genes or chromosomes to generate the next generation, and the optimal architecture of artificial neural networks with evolved weights or thresholds is finally achieved.

  • PDF

Gene Algorithm of Crowd System of Data Mining

  • Park, Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.40-44
    • /
    • 2012
  • Data mining, which is attracting public attention, is a process of drawing out knowledge from a large mass of data. The key technique in data mining is the ability to maximize the similarity in a group and minimize the similarity between groups. Since grouping in data mining deals with a large mass of data, it lessens the amount of time spent with the source data, and grouping techniques that shrink the quantity of the data form to which the algorithm is subjected are actively used. The current grouping algorithm is highly sensitive to static and reacts to local minima. The number of groups has to be stated depending on the initialization value. In this paper we propose a gene algorithm that automatically decides on the number of grouping algorithms. We will try to find the optimal group of the fittest function, and finally apply it to a data mining problem that deals with a large mass of data.

Introduction to Gene Prediction Using HMM Algorithm

  • Kim, Keon-Kyun;Park, Eun-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.489-506
    • /
    • 2007
  • Gene structure prediction, which is to predict protein coding regions in a given nucleotide sequence, is the most important process in annotating genes and greatly affects gene analysis and genome annotation. As eukaryotic genes have more complicated structures in DNA sequences than those of prokaryotic genes, analysis programs for eukaryotic gene structure prediction have more diverse and more complicated computational models. There are Ab Initio method, Similarity-based method, and Ensemble method for gene prediction method for eukaryotic genes. Each Method use various algorithms. This paper introduce how to predict genes using HMM(Hidden Markov Model) algorithm and present the process of gene prediction with well-known gene prediction programs.

  • PDF

Clustering Gene Expression Data by MCL Algorithm (MCL 알고리즘을 사용한 유전자 발현 데이터 클러스터링)

  • Shon, Ho-Sun;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • The clustering of gene expression data is used to analyze the results of microarray studies. This clustering is one of the frequently used methods in understanding degrees of biological change and gene expression. In biological research, MCL algorithm is an algorithm that clusters nodes within a graph, and is quick and efficient. We have modified the existing MCL algorithm and applied it to microarray data. In applying the MCL algorithm we put forth a simulation that adjusts two factors, namely inflation and diagonal tent and converted them by making use of Markov matrix. Furthermore, in order to distinguish class more clearly in the modified MCL algorithm we took the average of each row and used it as a threshold. Therefore, the improved algorithm can increase accuracy better than the existing ones. In other words, in the actual experiment, it showed an average of 70% accuracy when compared with an existing class. We also compared the MCL algorithm with the self-organizing map(SOM) clustering, K-means clustering and hierarchical clustering (HC) algorithms. And the result showed that it showed better results than ones derived from hierarchical clustering and K-means method.