• Title/Summary/Keyword: Gelatin microspheres

Search Result 12, Processing Time 0.017 seconds

Promotion of 3T3 and HDF Cell Migration by Gelatin-modified Fibroin Microspheres

  • Se Change Kwon;Won Hur
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.186-191
    • /
    • 2023
  • The goal of this study was to use gelatin to modify the surface of fibroin microspheres to enhance their biofunctionality for tissue engineering and regenerative medicine applications. Three different methods were used for the modification: coating, incorporation, and covalent bonding. Wound-healing assays demonstrated that gelatin modification of fibroin microspheres enhances 3T3 and HDF cell migration. Although the level of gelatin coverage varied depending on the method used, there was no significant difference between the modified microspheres. The gelatin-modified microspheres also increased the migration velocity of individual 3T3 cells. The results suggest that gelatin modification of fibroin microspheres is a promising approach for developing functional biomaterials with enhanced biological properties. Further optimization of gelatin modification is necessary to maximize the biofunctionality of fibroin microspheres.

Intravascular Tumour Targeting of Aclarubicin-loaded Gelatin Microspheres Preparation biocompatibility and biodegradability

  • Lee, Kang-Choon;Koh, Ik-Bae
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.42-49
    • /
    • 1987
  • This study is to evaluate the potential use of aclarubicin-loaded gelatin microspheres as an intravascular biodegradable drug delivery system for the regional cancer therapy. The diameter of the microspheres prepared by water in oil emulsion polymerization could be controlled by adjusting the stirring rate in the range of 10-50 $\mu$m : D(in $\mu$m) = -73.8 log (rpm) + 262.7. The addition of proteolytic enzyme increased the in vitro aclarubicin release but it did not change the amount of the initial burst release which reached about 45%. Microspheres injected intravenously into the mouse tail vein embolized only to the lung when observed by fluorescence microscopy. From histological examination following injection of gelatin microspheres into mouse femoral muscle, mild inflammation was observed from the appearance of neutrophils after 2 days and rapid repair process was confirmed thereafter. Biodegradation process of gelatin microspheres lodged on the pulmonary capillary bed was followed up by microscopic observation; degradation was taking place by about 36 hrs, followed by severe damage on the spheerical shape and microspheres was no longer found 10 days after injection.

  • PDF

Preparation of magnetic gelatin microspheres for the targeting of drugs

  • Lee, Kang-Choon;Koh, Ik-Bae;Oh, In-Joon
    • Archives of Pharmacal Research
    • /
    • v.9 no.3
    • /
    • pp.145-152
    • /
    • 1986
  • Magnetically reponsive gelatin microspheres for the targeting of drugs have been prepared using a water-in-oil emulsion technique with chemical cross-linking of the protein. The manufacturing variables affecting microsphere size, size distribution and surface characteristics have been examined as well as the magnetic responsiveness in vitro. Sesame oil was utilized for non-aqueous phase and magentic gelatin microspheres of different size from 1. 89 to 14.88 $\mu\textrm{m}$ in mean diameter could be obtained with variation of HLB values of non-ionic surfactants. The content of magnetite which uniformly distributed throughout the microspheres was 26.7% (w/w). It was possible to control the localization of magnetic gelatin microspheres at specific sites within capilary models by using external magnetic field of under 5K gauss.

  • PDF

Pharmaceutical Potential of Gelatin as a pH-responsive Porogen for Manufacturing Porous Poly(d,l-lactic-co-glycolic acid) Microspheres

  • Kim, Hyun-Uk;Park, Hong-Il;Lee, Ju-Ho;Lee, Eun-Seong;Oh, Kyung-Taek;Yoon, Jeong-Hyun;Park, Eun-Seok;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.245-250
    • /
    • 2010
  • Porous poly(lactic-co-glycolic acid) microspheres (PLGA MS) have been utilized as an inhalation delivery system and a matrix scaffold system for tissue engineering. Here, gelatin (type A) is introduced as an extractable pH-responsive porogen, which is capable of controlling the porosity and pore size of PLGA microspheres. Porous PLGA microspheres were prepared by a water-in-oil-in-water ($w_1/o/w_2$) double emulsification/solvent evaporation method. The surface morphology of these microspheres was examined by varying pH (2.0~11.0) of water phases, using scanning electron microscopy (SEM). Also, their porosity and pore size were monitored by altering acidification time (1~5 h) using a phosphoric acid solution. Results showed that the pore-forming capability of gelatin was optimized at pH 5.0, and that the surface pore-formation was not significantly observed at pHs of < 4.0 or > 8.0. This was attributable to the balance between gel-formation by electrostatic repulsion and dissolution of gelatin. The appropriate time-selection between PLGA hardening and gelatin-washing out was considered as a second significant factor to control the porosity. Delaying the acidification time to ~5 h after emulsification was clearly effective to make pores in the microspheres. This finding suggests that the porosity and pore size of porous microspheres using gelatin can be significantly controlled depending on water phase pH and gelatin-removal time. The results obtained in this study would provide valuable pharmaceutical information to prepare porous PLGA MS, which is required to control the porosity.

The Preparation and Release Property of Alginate Microspheres Coated Gelatin-cinnamic Acid (젤라틴-신남산 접합체가 코팅된 알긴산나트륨 마이크로스피어의 제조 및 방출 특성)

  • Lee, Ju Hyup;Ma, Jin Yeul;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-475
    • /
    • 2013
  • This study is about photosensitive microspheres prepared by coating alginate microspheres with gelatin-cinnamic acid conjugate. Firstly, alginate microspheres was prepared in water-in-oil (W/O) emulsion and then they were coated with gelatin- cinnamic acid conjugate. Herein, gelatin-cinnamic acid conjugate is obtained by the amidation between an amine group of gelatin and a carboxy group of cinnamic acid. Cinnamic acid is widely used as a photo-responsive material easy to dimerize and dedimeriz under UV irradiation at ${\lambda}$ = 254 nm and ${\lambda}$ = 365 nm, respectively. As shown in SEM-EDS, alginate was successfully coated with gelatin-ciannmic acid. By determining the absorbance of coated microspheres at 270nm, the amount of cinnamic acid per microspheres was 0.13/1. The SEM photos showed the size of coated microspheres is around $10{\mu}m$. And the degrees of dimerization and dedimerization were calculated to be 49% and 23% respectively. Then the release of FITC-dextran from the coated micrspheres was studied and release the degree was 42%. As a result, the coated microspheres have potential to be used as a photo-responsive drug carrier to delivery drugs.

Preparation and Evaluation of Chondroitin Sulfate/Gelatin Microspheres Containing Dexamethasone 21-Acetate (덱사메타손 21-아세테이트를 함유한 콘드로이틴 설페이트/젤라틴 마이크로스피어의 제조 및 평가)

  • Yong, Chul-Soon;Kim, Young-Ju;Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.273-280
    • /
    • 1996
  • Chondroitin sulfate/gelatin microspheres containing dexamethasone 21-acetate were prepared by complex coacervation method and their release patterns were examined in vitro. Microspheres prepared with a small amount of crosslinking agent had smooth surface and few pores, but those with a large amount of crosslinking agent were more porous and less spherical. In vitro release patterns were varied by changing polymer/drug weight ratio and amount of crosslinking agent. The release rate of dexamethasone 21-acetate in the presence of collagenase was faster than that in the absence of collagenase. Anti-inflammatory effect of dexamethasone 21-acetate microspheres was more efficient than that of dexamethasone 21-acetate solution in carrageenan-induced arthritis in the rat. On the basis of the above results, we might expect the degradation and drug release rate of these microspheres to be regulated by the degree of crosslinking and the level of enzymes. In patients with severe rheumatoid arthritis who have high concentration of collagenase, more drug would be released from the microspheres. An intra-articular injection therapy of rheumatoid arthritis with desired release kinetics could be developed to enhance patient compliance and therapeutic index.

  • PDF

Drug Targeting to Lungs by Way of Microspheres

  • Harsha, N. Sree;Rani, R.H. Shobha
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.598-604
    • /
    • 2006
  • In many conventional drug delivery systems in vogue, failure to deliver efficient drug delivery at the target site/organs; is evident as a result, less efficacious pharmacological response is elicited. Microspheres can be derived a remedial measure which can improve site-specific drug delivery to a considerable extent. As an application, Lung-targeting Ofloxacin-loaded gelatin microspheres (GLOME) were prepared by water in oil emulsion method. The Central Composite Design (CCD) was used to optimize the process of preparation, the appearance and size distribution were examined by scanning electron microscopy, the aspects such as in vitro release characteristics, stability, drug loading, loading efficiency, pharmacokinetics and tissue distribution in albino mice were studied. The experimental results showed that the microspheres in the range of $0.32-22\;{\mu}m$. The drug loading and loading efficiency were 61.05 and 91.55% respectively. The in vitro release profile of the microspheres matched the korsmeyer’s peppas release pattern, and release at 1h was 42%, while for the original drug, ofloxacin under the same conditions 90.02% released in the first half an hour. After i.v. administration (15 min), the drug concentration of microspheres group in lung in albino mice was $1048\;{\mu}g/g$, while that of controlled group was $6.77\;{\mu}g/g$. GLOME found to release the drug to a maximum extent in the target tissue, lungs.

A Study on the Preparation of Hollow Microspheres Using Waste Polystyrene (폐 Polystyrene을 이용한 중공 미세구 제조에 관한 연구)

  • Kwon, Soon Young;Woo, Je-Wan
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.205-210
    • /
    • 2006
  • In this study, polystyrene hollow microspheres were prepared via optimized purifying steps for the reuse of waste polystyrene. PS/PVA double layered hollow microspheres were prepared using the multiple emulsion ($W_1/O/W_2$) method with recycled polystyrene. The sonication treatment at the first stage of $W_1/O$ emulsion formation was very important factor of control of particle size and its distribution. When sonication was treated for 20 seconds, the average particle size and distribution were $1.35{\mu}m$ and $0.8{\mu}m{\sim}2.8{\mu}m$, respectively. The double layered hollow microspheres that have smaller and uniformed particle size distribution were manufactured when gelatin or Tween 80 was used as surfactants in the $W_2$ phase.

  • PDF

Preparation of Biodegradable PLGA Microspheres for Sustained Local Anesthesia and Their in vitro Release Behavior (지속적인 국소마취를 위한 생분해성 PLGA 미립구의 제조와 생체외 방출 거동)

  • 조진철;강길선;최학수;이종문;이해방
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.728-735
    • /
    • 2000
  • Fentanyl-loaded biodegradable poly(L-lactide-co-glycolide) (75 : 25 by mole ratio of lactide to glycolide, PLGA) microspheres (MSs) were prepared to study the possibility for long-acting local anesthesia. We developed the fentanyl base (FB, slightly water-soluble)-loaded PLGA MSs by means of conventional O/W solvent evaporation method. The size of MSs was in the range of 10~150 ${\mu}{\textrm}{m}$. The morphology of MSs was characterized by SEM, and the in vitro release amounts of FB were analyzed by HPLC. The lowest porous cross-sectional morphology and the highest encapsulation efficiency were obtained by using gelatin as an emulsifier. The influences of several preparation parameters, such as emulsifier types, molecular weights and concentrations of PLGA, and initial drug loading amount, etc., have been observed in the release patterns of FB. The release of FB in vitro was more prolonged over 25 days, with close to zero-order pattern by controlling the preparation parameters. We also investigated the physicochemical properties of FB-loaded PLGA MSs by X-ray diffraction and differential scanning calorimeter.

  • PDF

Preparation and Characteristics of Ipriflavone-Loaded PLGA Microspheres (이프리플라본을 함유한 생분해성 미립구의 제조와 특성분석)

  • 이진수;강길선;이종문;신준현;정제교;이해방
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Ipriflavone (IP) stimulates proliferation and differentiation of osteoblast and also enhances calcitonin secretion in the presence of estrogen. Poly(lactide-co-glycolide) (PLCA) due to its controllable biodegradability and relatively good biocompatibility is one of the most significant candidates for the study of drug controlled release system. In this study, IP-loaded PLGA microspheres (MSs) was prepared by using conventional O/W solvent evaporation method. The size of MSs was in the range of 5~200 $mu extrm{m}$. The morphology of MSs was characterized by SEM. And, in vitro release amounts of IP were analyzed by HPLC. The highest encapsulation efficiency were obtained by using gelatin and polyvinyl alcohol (PVA) as emulsifiers. The morphology, size distribution, and in vitro release pattern of MSs were changed by several preparation parameters such as molecular weights (8, 20, 33 and 90 kg/mol), polymer concentrations (2.5, 5, 10 and 20%), emulsifier types (PVA, gelatin and Tween 80), initial drug loading amount (5, 10, 20 and 30%) and stirring speed (250, 500 and 1000 rpm). The release of IP in vitro was more prolonged over 30 days, with close to zero-order pattern by controlling the preparation parameters. The physicochemical properties of IP-loaded PLGA MSs were investigated by XRD and DSC.