DOI QR코드

DOI QR Code

The Preparation and Release Property of Alginate Microspheres Coated Gelatin-cinnamic Acid

젤라틴-신남산 접합체가 코팅된 알긴산나트륨 마이크로스피어의 제조 및 방출 특성

  • Lee, Ju Hyup (College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Ma, Jin Yeul (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine) ;
  • Kim, Jin-Chul (College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University)
  • 이주협 (강원대학교 의생명과학대학 생명공학연구소) ;
  • 마진열 (한국한의학연구원 신한방제제연구센터) ;
  • 김진철 (강원대학교 의생명과학대학 생명공학연구소)
  • Published : 2013.10.31

Abstract

This study is about photosensitive microspheres prepared by coating alginate microspheres with gelatin-cinnamic acid conjugate. Firstly, alginate microspheres was prepared in water-in-oil (W/O) emulsion and then they were coated with gelatin- cinnamic acid conjugate. Herein, gelatin-cinnamic acid conjugate is obtained by the amidation between an amine group of gelatin and a carboxy group of cinnamic acid. Cinnamic acid is widely used as a photo-responsive material easy to dimerize and dedimeriz under UV irradiation at ${\lambda}$ = 254 nm and ${\lambda}$ = 365 nm, respectively. As shown in SEM-EDS, alginate was successfully coated with gelatin-ciannmic acid. By determining the absorbance of coated microspheres at 270nm, the amount of cinnamic acid per microspheres was 0.13/1. The SEM photos showed the size of coated microspheres is around $10{\mu}m$. And the degrees of dimerization and dedimerization were calculated to be 49% and 23% respectively. Then the release of FITC-dextran from the coated micrspheres was studied and release the degree was 42%. As a result, the coated microspheres have potential to be used as a photo-responsive drug carrier to delivery drugs.

이 연구는 젤라틴-신남산 접합체를 알긴산나트륨 마이크로스피어에 코팅하여 광 민감성 마이크로스피어를 제조하여 광 민감성을 관찰하였다. 광 민감성 마이크로스피어는 W/O (water-in-oil) 에멀젼법을 이용하여 알긴산나트륨 마이크로스피어를 만든 후 젤라틴-신남산 접합체를 알긴산나트륨 마이크로스피어 표면에 코팅시켜 제조하였다. 젤라틴-신남산 접합체의 합성은 젤라틴의 아미노 그룹과 신남산의 카복실 그룹 사이의 아미드화반응으로 결합하였다. 알긴산나트륨 마이크로스피어 표면의 젤라틴-신남산 접합체의 코팅은 SEM-EDS의 결과로 확인하였다. 또한 형성된 접합체에 결합된 신남산의 흡광도를 측정하여 알긴산나트륨 1 g당 젤라틴-신남산 접합체가 0.13 g이 코팅된 것을 확인했다. 코팅된 마이크로스피어를 SEM을 통해 마이크로스피어의 크기가 $10{\mu}m$인 것을 확인했다. 광 민감성의 관찰을 위해 365 nm와 254 nm 파장의 자외선을 조사하여 이량화 정도를 측정한 결과 이량화 정도가 49%와 28%였다. 마이크로스피어의 방출경향을 관찰하기 위해 모델약물로 FITC-dextran을 사용하여 알긴산나트륨 마이크로스피어에 봉입하여 방출실험을 진행하였고 그 결과 약 42%의 FITC-dextran이 방출되었다. 결과적으로 젤라틴-신남산 접합체가 코팅된 마이크로스피어는 광 반응성을 가지는 약물전달체로 사용될 수 있을 것이다.

Keywords

References

  1. J. M. Russell, S. H. Allan, A. P. Pauli, S. B. Lisa, and R. G. Wayne, Calcium-alginate beads for the oral delivery of transforming growth factor-${\beta}1$ (TGF-${\beta}1$) : stabilization of TGF-${\beta}1$ by the addition of polyacrylic acid within acid-treated beads, Journal of Controlled Release, 30, 3 (1994).
  2. N. M. Velings and M. M. Mestdagh, Physico-chemical properties of alginate gel beads, Polymer Gels and Networks, 3, 311 (1995). https://doi.org/10.1016/0966-7822(94)00043-7
  3. S. M. Jay and W. M. Saltman, Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking, Journal of Controlled Release, 134, 26 (2009). https://doi.org/10.1016/j.jconrel.2008.10.019
  4. M. G. Neumann, C. C. Schmitt, and E. T, Lamazaki, A fluorescence study of the interactions between sodium alginate and surfactants, Carbohydrate Research, 338, 1109 (2003). https://doi.org/10.1016/S0008-6215(03)00051-X
  5. M. George and T. E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan - a review, Journal of Controlled Release, 114, 1 (2006). https://doi.org/10.1016/j.jconrel.2006.04.017
  6. M. K. Kang, J. Dai, and J.-C. Kim, Ethylcellulosemicroparticles containing chitosan and gelatin: pH-dependent release caused by complex coacervation, Journal of Industrial and Engineering Chemistary, 18, 355 (2012).
  7. A. Bigia, G. Cojazzib, S. Panzavoltaa, K. Rubinia, and N. Roveria, Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking, Biomaterials, 22, 763 (2001). https://doi.org/10.1016/S0142-9612(00)00236-2
  8. K. Ulubayrama, A. N. Cakarb, P. Korkuguzb, C. Ertanc, N. Hagirci, and N. Hagirci, EGF containing gelatin-based wound dressings, Biomaterials, 22, 1345 (2001). https://doi.org/10.1016/S0142-9612(00)00287-8
  9. U. G. Spizzirri, F. Iemma, F. Puoci, G. Cirillo, M. Curcio, O. I. Parigi, and N. Picci, Synthesis of Antioxidant Polymers by Grafting of Gallic Acid and Catechin on Gelatin, Biomacromolecules, 10, 1923 (2009). https://doi.org/10.1021/bm900325t
  10. H. C. Liang, W. H. Chang, K. J. Lin, and H. W. Sung, Genipincrosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies, Journal of Biomedical Materials Research Part A, 65, 271 (2003).
  11. M. Gudmundsson and H. Hafsteinsson, Gelatin from cod skins as affected by chemical treatments, Journal of Food Science, 62, 37 (1997). https://doi.org/10.1111/j.1365-2621.1997.tb04363.x
  12. H. L. Bruno, Investigation of viscosity and gelation properties of different mammalian and fish gelatins, Food Hydrocolloids, 5, 353 (1991). https://doi.org/10.1016/S0268-005X(09)80047-7
  13. Y. Qiu and K. Park, Environment-sensitive hydrogels for drug delivery, Advanced Drug Delivery Reviews, 64, 49 (2012). https://doi.org/10.1016/j.addr.2012.09.024
  14. E. Y. Mok, H. J. Cha, and J. C. Kim, Preparation and Characterization of Complex Composed of ${\beta}$-Cyclodextrin Polymer/Cinnamic Acid, Appl. Chem. Eng, 23, 462 (2012).
  15. J. H. Ko, H. Y. Yin, J. A, and D. J. Chung, Characterization of cross-linked gelatin nanofibers through electrospinning, Macromolecular Research, 18, 137 (2010). https://doi.org/10.1007/s13233-009-0103-2
  16. A. J. Ribeiro, R. J. Neufeld, P. Amaud, and J. C. Chaumeil, Microencapsulation of lipophilic drugs in chitosan-coated alginate microspheres, International Journal of Pharmaceutics, 187, 115 (1999). https://doi.org/10.1016/S0378-5173(99)00173-8
  17. E. B. Denkbas and M. Odabasi, Chitosan microspheres and sponges: Preparation and characterization, Journal of Applied Polymer Science, 76, 1637 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000613)76:11<1637::AID-APP4>3.0.CO;2-Q
  18. X. Z. Shu and K. J. Zhu, A novel approach to prepare tripolyphosphate/ chitosan complex beads for controlled release drug delivery, International Journal of Pharmaceutics, 201, 51 (2000). https://doi.org/10.1016/S0378-5173(00)00403-8