• Title/Summary/Keyword: Gear ratio

Search Result 324, Processing Time 0.037 seconds

Development of a Optimal Design Program for the Helical Gear on Vehicle Transmission (자동차 트랜스미션용 헬리컬 기어의 최적 설계 프로그램 개발)

  • Shim, Jae-Yong;Kwak, Jae-Seob;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.88-93
    • /
    • 2000
  • Recently the gear design focuses on the optimal design to extract the design factors from the vehicle transmission that is required to equip the powerful, speedy and silent characteristics. In this study, we had determined modules($m_n$) and face widths (b) to sustain strengths of contact and bending. The pressure angle ($\alpha$) and the helix angle ($\beta$) also had been obtained from the constraint of a contact ratio ($\varepsilon) on helical gears. Through the optimal design algorithm suggested in this study, the design factors were calculated on vehicle transmission gears and those determined factors were able to firm a suitability of the design.

  • PDF

Position Control of Wafer Lift Pin for the Reduction of Wafer Slip in Semiconductor Process Chamber

  • Koo, Yoon Sung;Song, Wan Soo;Park, Byeong Gyu;Ahn, Min Gyu;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.18-21
    • /
    • 2020
  • Undetected wafer slip during the lift pin-down motion in semiconductor equipment may affect the center to edge variation, wafer warpage, and pattern misalignment in plasma equipment. Direct measuring of the amount of wafer slip inside the plasma process chamber is not feasible because of the hardware space limitation inside the plasma chamber. In this paper, we demonstrated a practice for the wafer lift pin-up and down motions with respect to the gear ratio, operating voltage, and pulse width modulation to maintain accurate wafer position using remote control linear servo motor with an experimentally designed chamber mockup. We noticed that the pin moving velocity and gear ratio are the most influencing parameters to be control, and the step-wised position control algorithm showed the most suitable for the reduction of wafer slip.

Development of Strength Estimation and Design System of Power Transmission Bevel Gears(I) -A Disign Method Based on Strength and Durability in AGMA Standards- (동력전달용 베벨기어의 강도평가 및 설계시스템 개발 (1) -AGMA규격 강도기준설계법-)

  • 정태형;변준형;김태형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.591-599
    • /
    • 1994
  • A design system for power transmission bevel gears(straight, zerol, and spiral) is developed, in which the strength and durability of bevel gears can be estimated and the size of bevel gears can be minimized by introducing optimal techniques. The size of bevel gear pair as the object function to be minimized is the volume of equivalent spur gear pair at mean normal section, and the design variables to be determined are considered as the number of teeth, face width, diametral pitch, and spiral angle in spiral bevel gear. The strength(bending strength, pitting resistance) according to the AGMA standards, geometrical quantities, and operating characteristics(interference of pinion, contact ratio, etc.) are considered as the constraints in design optimization. The optimization with these constraints becomes nonlinear problem and that is solved with ALM(Augmented Lagrange Multiplier) method. The developed design method is applied to the example designs of straight, zerol, and spiral bevel gears. The design results are acceptable from the viewpoint of strength and durability within the design ranges of all other constraint, and the bevel gears are designed toward minimizing the size of gear pair. This design method is easily applicable to the design of bevel gears used as power transmitting devices in machineries, and is expected to be used for weight minimization of bevel gear unit.

Torque Ripple Improving and Analysis of Coil-winding Rotor of Magnetic Gear (권선계자형 자기 기어의 고 토크 리플 회전자에 대한 분석 및 개선)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.259-266
    • /
    • 2020
  • Magnetic gears have the same characteristics as mechanical gears, and each rotor does not come in contact, which is advantageous over mechanical gears in friction noise, heat generation, and maintenance. In addition, when the rotor using the coil-winding is applied, it is possible to control the output of the gear as well as to cut off its own drive in the emergency situation and to change its gear ratio. So the application of the magnetic gear is infinite. However, when the coil-winding rotor is used, cogging torque due to the attraction force between the permanent magnet and the iron core appears, which leads to an increase in the torque ripple component causing the rotor vibration. Therefore, in this paper, various shapes of the coil-winding rotor are analyzed to reduce the torque ripple of the rotor, and the optimum shape for reducing the torque ripple of the magnetic gear is presented.

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.

A Study on the Gating System and Simulation for Gravity Casting of ZnDC1 Worm Gear (아연 합금 웜기어의 중력 주조 공정을 위한 주조 방안 설계 및 해석에 관한 연구)

  • Lee, Un-Gil;Kim, Jae-Hyun;Jin, Chul-Kyu;Chun, Hyeon-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.589-596
    • /
    • 2021
  • In this study, the optimum gating system was designed, and the two zinc alloy worm gears were manufactured in single process by applying a symmetrical gating system with 2 runners. The SRG ratio is set to 1 : 0.9 : 0.6, and the cross-sectional shapes such as sprue, runner and gate are designed. In order to determine whether the design of the gating system is appropriate, casting analysis was carried out. It takes 4.380 s to charge the casting 100%, 0.55 to 0.6 m/s at the gates and solidification begins after the casting is fully charged. The amount of air entrapment is 2% in the left gear and 6% in the right gear. Hot spots occurred in the center hole of the gear, and pores were found to occur around the upper part of the hole. Therefore, the design of the casting method is suitable for worm gears. CT analysis showed that all parts of worm gear were distributed with fine pores and some coarse pores were distributed around the central hole of worm gear. The yield strength and tensile strength were 220 MPa, 285 MPa, and the elongation rate was 8%. Vickers hardness is 82 HV.

Flexible Multi-body Dynamic Analysis for Reducer-integrated Motor of Autofilter (오토필터의 감속기 일체형 모터에 관한 유연 다물체 동역학 해석)

  • J.K. Kim;B.D. Kim;G.S. Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.311-317
    • /
    • 2023
  • An autofilter is a device that removes impurities contained in heavy fuel oil used in diesel engines of ships or power plants, and also automatically removes impurities accumulated in the filter through a reverse washing function. The reducer-integrated motor serves to rotate the filter at low speed to enable reverse automatic cleaning in the autofilter device. To achieve a low speed of 0.65 to 0.75 rpm in a reducer-integrated motor, a small motor that can operate at 97rpm at a rated voltage of 110 V and 112.5 rpm at 220 V is required. Additionally, a large gear ratio of 1/150 is required. To ensure the durability and reliability of these reducers, the strength of the gear must be evaluated at the design stage. In general, there is a limit to evaluating the stress and strain state according to the vibration characteristics acting on each gear in the driving state of the reducer through quasi-static analysis. Therefore, in this study, the operation characteristics of the auto filter's reducer-integrated motor were first analyzed using the rigid body dynamics analysis method. Then, this rigid body dynamics analysis model was extended to a flexible multibody dynamics analysis model to analyze the stress and strain states acting on each gear and evaluate the design feasibility of the gear.

Study on Optimal Design and Analysis of Worm Gear Reducer for High Place Operation Car (고소작업차용 웜기어 감속기의 최적설계 및 해석에 관한 연구)

  • Kim, Tae Hyun;Jang, Jeong Hwan;Lee, Dong Gyu;Kim, Lae Sung;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.98-103
    • /
    • 2015
  • Swing reducers are widely used in special vehicles that have swing motions. Generally, compact swing reducers were constituted by a worm gear pair. Worm gears are one of the most important technical devices for transmitting torque between spatially crossed axes. Due to their high transmission ratio and compact structure, they are widely used in power transmission applications where high reduction is required. This paper presented approaches to improve the transmission efficiency and assembling performance of 3.5 ton class worm gear swing reducers. Worm wheel and the case of swing reducers were optimized and certified by a finite element method. Finally, an actual swing reducer was processed and assembled to test the performance.

Experimental Study on the Input Coupled type CVT combined a Differential Gear and V-Belt type CVU

  • Kim, Yeon-Su;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.43-55
    • /
    • 2001
  • A continuously variable transmission(CVT) mechanism composed of one differential gear unit and one continuously variable unit(CVU) can be classified according to the coupling of CVU and the direction of power flows. The mechanism has many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range and generation of geared neutral. The CVT mechanism considered here is the input coupled type which combines the functions of a 2K-H I type differential gear unit and a V-belt type CVU. One shaft of the CVU is connected directly to the input shaft and another shaft of it is linked to the differential gear unit. It is shown that some fundamental relations(speed ratios, power flows and efficiencies) for twelve mechanisms previously described are valid by various experimental studies, six of them produce a power circulation and the others produce a power split. Some useful comparisons between theoretical analysis and experimental results are presented. General properties also are discussed, which connect following power flow modes : (a) power circulation mode; (b) power split mode.

  • PDF

Optimization of the Deflection for large Disk type Gear of Auto Phoropter (자동굴절검사기용 대형 원판형 기어의 변형 최적화)

  • Jung, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.370-376
    • /
    • 2011
  • Recently, the application range of plastic gears is widely expanding by the development of engineering plastics with good mechanical properties. Plastic gears have excellent performances such as light weight, water resistance and vibration absorbing ability for metallic gears. In this study, the optimization of injection molding process was done for the large disk type plastic gears of auto phoropter. Design Of Experiment (Taguchi method) was adopted to find a tendency of molding conditions that influence the flatness of disk type gear. Four main factors for molding conditions were selected based on injection temperature, filling time, packing pressure and mold temperature. Also, Filling, packing and cooling analyses were carried out to evaluate Z directional deflection of large disk type gear by using the simulation software (Moldflow) based on the DOE. From the results, it was found that the injection temperature and packing pressure are the most sensitive parameters for the Z directional deflection of large disk type gears.