• Title/Summary/Keyword: Gear manufacturing

Search Result 413, Processing Time 0.027 seconds

A study on structure analysis and material improvement lightweight of special-purpose vehicles axle (특수차량용 엑슬의 경량화를 위한 구조해석과 소재 개선에 관한 연구)

  • Lee, Jung-hwa;Kwon, Hui-june;Kang, Jung-ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.136-142
    • /
    • 2009
  • The vehicle's light-weight technology is divided into optimization of structure geometric and material. Structure geometric optimization and improvement of materials has examined to be power-train and maintenance on the severe condition. The core technology of Special vehicle's light-weight is constitute by Drop box, Axle and Final reduction gear. Technology and product of the parts is high to overseas and import dependency. We will want to examine the possibility of light-weight for the Axle Case and Drop box-connections. In this research, conventional design of excess weight will inhibit the mobility and fuel efficiency. Through the improvement of Axle material, we saw the possibility reducing weight. If you use the results of these studies, it will be available to domestic production technology and reducing weight of RV car, Dump truck, Track crain, etc.

  • PDF

Structural and Fatigue Analysis on Bicycle Pedal (자전거 페달에 대한 구조 및 피로 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.51-57
    • /
    • 2012
  • This study investigates structural and fatigue analyses at bicycle pedal. Maximum deformation at model 1 is 2 times as much as model 2 at static analysis. Models 1 and 2 have the possibility of the weakest strength at the part of contact with chain gear. Among the cases of nonuniform fatigue loads at Models 1 and 2, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^4$ MPa and the amplitude stress of 0 to $10^4$ MPa, the possibility of maximum damage becomes 4%. This stress state can be shown with 5 to 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The analysis result of this study can be effectively utilized with the safe design of pedal.

Assemblability Analysis of the Kinematic Configurations of Ravigneaux-Type Automatic Transmissions (라비뇨 타입 자동변속기의 기구학적 구성에 대한 조립 가능성 분석에 관한 연구)

  • Kwon, Hyun Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.49-58
    • /
    • 2019
  • Automatic transmissions are standard equipment in most automotive vehicles because they provide smooth speed shifting and a compact design with multiple speed ratios. Their structure consists mainly of planetary gear sets as power-transmitting devices and brakes and clutches as shifting devices. Several forward and one reverse speed ratios are achieved by actuating shifting devices to connect gears, input and output shafts, and the transmission case. In the development of a new transmission, kinematic configurations reflecting the transmission concept design are required, and the ability of the new concept design to be assembled without any interference among the connections must be demonstrated. In this study, an assemblability analysis of the kinematic configurations of a Ravigneaux-type automatic transmission was conducted with an assemblable example of an 8-speed Ravigneaux-type automatic transmission.

A study on the Design of Drum Type Automatic Tool Changer (드럼형 자동공구교환장치의 설계에 관한 연구)

  • Choi, Hyun-Jin;Lee, Han-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.52-59
    • /
    • 2020
  • Automatic tool changers (ATCs) can be divided into drum and chain types. Drum-type ATCs contain a magazine, where the tools are mounted, and a cam gearbox, which swaps the tools via roller gear and grooved plate cams. Drum-type ATCs are advantageous in that the operating time for the tool magazine is more rapid than that of chain-type ATCs and the length of the unit is shorter. Thus, drum-type ATCs can be fabricated into various shapes and forms depending on the number of tools and the magazine size in accordance with machining center requirements and consumer demand. In particular, the price competitiveness of a machining center with a drum-type ATC is higher, while drum-type ATCs are more rigid with fewer parts, possibly reducing the need for regular servicing. This study aims to verify the structural stability and design validity of the magazine base, which is the main structure of a drum-type ATC, using finite element analysis. This study kinematically verifies the specifications of the selected drive motor and reducer and assessed the design of the cam gearbox. It also conducts a structural analysis of the roller camp, which is the core component of the cam gearbox, based on the results of the kinetodynamic analysis, thus validating the structural design.

Reduction of the Roll-Over of the Sector Tooth for Achieving Improved Recliner Locking Performance (리클라이너 결합 성능 향상을 위한 섹터투스의 롤오버 저감 방법)

  • Lee, Sang-Hoon;Choi, Hong-Seok;Chang, Myung-Jin;Kim, Dong-Su;Bae, Jae-Ho;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1623-1630
    • /
    • 2010
  • In this study, effective forming methods for reducing the roll-over of a sector tooth, which is a main component of an automotive seat recliner, are proposed. Due to the large amount of roll-over, accurate contact between the inner gear of a sector tooth and the outer gear of a pawl tooth cannot be normally achieved; thus sensitivity and safety for the passengers decrease. To overcome the aforementioned drawback, we investigated the effect of flowcontrol forming methods involving local embossing die, coining punch, and VIC (Variable Inverse Clearance) on the roll-over depth by FE-analysis and an experiment. The results of a fine-blanking experiment for verifying the proposed methods showed that VIC type is decidedly superior from the aspects of reduction of roll-over and tool strength of the sector tooth.

Analysis of the PTO Driveline Rattle Noise on an Agricultural Tractor (농업용 트랙터 PTO 전동라인의 래틀 소음 분석)

  • Ahn, Da-Vin;Shin, In-Kyung;Han, Hyun-Woo;Son, Gwan-Hee;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.45-54
    • /
    • 2019
  • In this study, we analyze the rattle noise of a power takeoff (PTO) driveline and develop a PTO driveline resonance model. We measured the rattle noise of the PTO driveline on the output shaft and, by analyzing the rattle noise in the time domain, we determine that the engine expansion stroke period matches the sound pressure of rattle noise. This finding helped us demonstrate that the rattle noise is caused by the collision between the PTO driving gear and the gear driven by the engine expansion stroke; the torsional vibration caused by this collision is affected by the angular velocity fluctuation of the PTO drive shaft. By measuring the angular velocity of the PTO drive shaft, we confirm that the angular velocity fluctuation of the engine flywheel tends to excessively amplify the PTO drive shaft angular velocity fluctuation. We conclude that the resonance, which occurs when the operating frequency of the engine is close to the natural frequency of the tractor power transmission system, causes the excessive angular velocity fluctuation of the PTO drive shaft. We performed a modal analysis of the PTO driveline resonance and, using the characteristic equation, we show that the resonance occurs when the engine rotation speed is close to 850 rpm, which matches the natural frequency of the PTO driveline.

Gear Analysis of Hydro-Mechanical Transmission System using Field Load Data (필드 부하를 활용한 정유압기계식 변속시스템의 기어 해석)

  • Kim, Jeong-Gil;Lee, Dong-Keun;Oh, Joo-Young;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.111-120
    • /
    • 2021
  • A tractor is an agricultural machine that performs farm work, such as cultivation, soil preparation, loading, bailing, and transporting, through attached working implements. Farm work must be carried out on time per the growing season of crops. As a result, the reliability of a tractor's transmission is vital. Ideally, the transmission's design should reflect the actual load during agricultural work; however, configuring such a measurement system is time- and cost-intensive. The design and analysis of a transmission are, therefore, mainly performed by empirical methods. In this study, a tractor with a measurement system was used to measure the actual working load in the field. Its hydro-mechanical transmission was then analyzed using the measured load. It was found that the velocity factor, load distribution factor, lubrication factor, roughness factor, relative notch sensitivity factor, and life factor affect the gear strength of the transmission. Also, loading conditions have a significant influence on the reliability of the transmission. It is believed that transmission reliability can be enhanced by analyzing the actual load on the transmission, as performed in this study.

A Study on Performance Improvement of Industrial Oil Pump Using Computational Analysis (전산해석을 이용한 산업용 오일펌프 성능개선에 관한 연구)

  • Kim, Jin-Woo;Lee, Hyun-Jun;Kong, Seok-Hwan;Lee, Seong-Won;Chung, Won-Ji
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1111-1117
    • /
    • 2022
  • Recently, interest in the circular economy has emerged in the industry. As a result, interest in Re-manufacturing, which makes old equipment similar to new products, is growing. In the machine tool industry with many aging equipment, the Re-manufacturing industry is essential, and among them, research on the performance improvement of gear type oil pumps was conducted. The purpose was to achieve the target performance of flow rate and volume efficiency by changing the shape of the gear pump housing clearance and inlet/outlet, and Computational Fluid Analysis and Central Composite Design were conducted using ANSYS CFX 2022 R2 and MINITAB®. The level of each determined factor was determined. 20 design points were derived, and the Flow Rate at each design point was calculated, and the Theoretical Flow Rate was calculated to obtain Volumetric Efficiency. The optimal design point was obtained when the Flow Rate was 140 lpm and the Volumetric Efficiency was maximum, the optimal design point was obtained when both were maximum, and the Surface Plot for each factor was obtained to identify the tendency.

A Study on the Design and Performance Test of Side Thruster (사이드 스러스터 설계 및 성능평가에 관한 연구)

  • Kim, Hyeong-Min;Kim, Lae-Sung;Cho, Sung-Hyun;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, we present a study concerning the design of a 400 N class side thruster for small ships. The side thrusters used in Korea are imported from abroad. The performance and durability of the imported products employed in Korea are not adequate, therefore the side thrusters which will be suitable for Korean domestic needs to be re-designed. The strength calculation of the side thruster was performed by KS standard. Strength calculation and design were made to meet design requirements. Structural analysis and safety factor analysis were carried out to confirm the validity of strength calculations and design. After manufacturing the bevel gear, a back lash test was conducted. We also conducted a no-load test, a rated load, and an overload test for a performance test and a durability test of the design while satisfying the design conditions.

Structural Analysis of a Composite Target-drone

  • Park, Yong-Bin;Nguyen, Khanh-Hung;Kweon, Jin-Hwe;Choi, Jin-Ho;Han, Jong-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2011
  • A finite element analysis for the wing and landing gear of a composite target-drone air vehicle was performed. For the wing analysis, two load cases were considered: a 5g symmetric pull-up and a -1.5g symmetric push-over. For the landing gear analysis, a sinking velocity of 1.4 m/s at a 2g level landing condition was taken into account. MSC/NASTRAN and LS-DYNA were utilized for the static and dynamic analyses, respectively. Finite element results were verified by the static test of a prototype wing under a 6g symmetric pull-up condition. The test showed a 17% larger wing tip deflection than the finite element analysis. This difference is believed to come from the material and geometrical imperfections incurred during the manufacturing process.